[Elenco soci]

Calì Michele

Ricercatore TD(B)

Università degli Studi di Catania

Sito istituzionale
SCOPUS ID: 6701527090
Orcid: 0000-0001-8753-8804

Pubblicazioni scientifiche

[1] Babič M., Marinković D., Kovačič M., Šter B., Calì M., A New Method of Quantifying the Complexity of Fractal Networks, Fractal and Fractional, 6(6), (2022). Abstract

Abstract: There is a large body of research devoted to identifying the complexity of structures in networks. In the context of network theory, a complex network is a graph with nontrivial topological features—features that do not occur in simple networks, such as lattices or random graphs, but often occur in graphs modeling real systems. The study of complex networks is a young and active area of scientific research inspired largely by the empirical study of real-world networks, such as computer networks and logistic transport networks. Transport is of great importance for the economic and cultural cooperation of any country with other countries, the strengthening and development of the economic management system, and in solving social and economic problems. Provision of the territory with a well-developed transport system is one of the factors for attracting population and production, serving as an important advantage for locating productive forces and providing an integration effect. In this paper, we introduce a new method for quantifying the complexity of a network based on presenting the nodes of the network in Cartesian coordinates, converting to polar coordinates, and calculating the fractal dimension using the ReScaled ranged (R/S) method. Our results suggest that this approach can be used to determine complexity for any type of network that has fixed nodes, and it presents an application of this method in the public transport system.

Keywords: complexity | fractal | Hurst exponent H | network | public transport

[2] Calì M., Ambu R., A mesh morphing computational method for geometry optimization of assembled mechanical systems with flexible components, International Journal on Interactive Design and Manufacturing, 16(2), 575-582, (2022). Abstract

Abstract: In this paper an interactive computational methodology was developed assuming that shape and size optimization of flexible components can significantly improve energy absorption or storage ability in assembled systems with flexible components (AS-FC). A radial basis functions mesh morphing formulation in non-linear numerical finite element analysis, including contact problems and flow interaction, was adopted as optimal design method to optimize shape and size design parameters in AS-FC. Flexible components were assembled in finite element environment according to functional ISO-ASME tolerances specification; non-linear structural analysis with flow interaction analysis was performed. The results of the study showed that the proposed method allows to optimize the shape and size of the flexible components in AS-FC maximizing the system's ability to absorb or store energy. The potentiality of the method and its forecasting capability were discussed for the case study of an automotive crash shock in which the specific energy absorption was increased by over 40%. The case studied refers to a simple flexible component geometry, but the method could be extended to systems with more complex geometries.

Keywords: Crash shock absorber | ISO-ASME tolerances specification | Radial basis functions | Shape and size optimization | Specific energy absorption

[3] Babič M., Marinkovic D., Bonfanti M., Calì M., Complexity Modeling of Steel-Laser-Hardened Surface Microstructures, Applied Sciences (Switzerland), 12(5), (2022). Abstract

Abstract: Nowadays, laser hardening is a consolidated process in many industrial sectors. One of the most interesting aspects to be considered when treating the surface-hardening process in steel materials by means of laser devices is undoubtedly the evaluation of the heat treatment quality and surface finish. In the present study, an innovative method based on fractal geometry was proposed to evaluate the quality of surface-steel-laser-hardened treatment. A suitable genetic programming study of SEM images (1280 × 950 pixels) was developed in order to predict the effect of the main laser process parameters on the microstructural geometry, assuming the microstructure of laser-hardened steel to be of a structurally complex geometrical nature. Specimens hardened by anthropomorphic laser robots were studied to determine an accurate measure of the process parameters investigated (surface temperature, laser beam velocity, laser beam impact angle). In the range of variation studied for these parameters, the genetic programming model obtained was in line with the complexity index calculated following the fractal theory. In particular, a percentage error less than 1% was calculated. Finally, a preliminary study of the surface roughness was carried out, resulting in its strong correlation with complex surface microstructures. Three-dimensional voxel maps that reproduce the surface roughness were developed by automating a routine in Python virtual environment.

Keywords: 3D voxel map | Fractal geometry | Genetic programming | Laser beam process parameters | Surface roughness

[4] Calì M., Sapienza I., Oliveri S.M., Battens Modelling and Optimization in Air-Sail Interaction Analysis, Lecture Notes in Mechanical Engineering, 59-68, (2022). Abstract

Abstract: Numerical codes can play an important function in the nautical design when advanced simulation tools are increasingly adopted for prediction purposes, and in particular for the calculation of the interaction between boat parts and surrounding fluids. Fluid-structure interaction analysis (FSI) can help engineers to set the optimum design of a sail and also the influence of panels and battens sail arrangement. The paper describes a methodology that enhances the understanding of panel and battens arrangement, as well as their stiffness on sail performance. Specifically, through the battens position, shape and stiffness parametrization, the sail non-developable shape was optimized, in order to compensate the variation in the angle of attack that occurs following variations in the speed of the wind at different sail heights. For an efficient and robust implementation of integrated Reynolds Averaged Navier Stokes (RANS) equations with Shear Stress Transport (SST) turbulence model and Computational Structural Mechanics (CSM) analysis, the constitutive sailcloth and battens characterization was conducted experimentally. The case study of a mainsail in Dacron© TNF 240 of a Vaurien dinghy boat, offered tangible results to support the methodology by validating it with experimental data.

Keywords: CFD-CSM analysis | Flying shape | Sail battens arrangement | SST model | Triangular membrane modeling | Twisting

[5] Ambu R., Oliveri S.M., Calì M., A Bespoke Neck Orthosis for Additive Manufacturing with Improved Design Method and Sustainable Material, Lecture Notes in Mechanical Engineering, 50-58, (2022). Abstract

Abstract: The use of additive manufacturing (AM) has widespread over the years in different areas, including the biomedical field. In particular, the design of customized orthoses, external medical devices used in the treatment of specific pathologies, was proposed in different studies mainly concerning upper limbs, while few investigations are reported relatively to the cervical area. In this paper a new design of a bespoke neck orthosis is reported. The manufacturing of a light device with a good transpiration allows to increase the patient’s comfort and, compatibly with the structural requirements, is a main goal to pursue. With this aim, various aspects were considered in the design and manufacturing of the orthosis. At the design stage, the geometry was conceived with a ventilation pattern based on Voronoi cells, which generally allows a better performance in terms of breathability with respect to a pattern made with uniform geometrical features, keeping at the same time structural requirements, as assessed by numerical finite elements simulations. At the manufacturing stage, a new composite material was used, namely Hemp Bio-Plastic® (HBP) filament, composed by polylactic acid (PLA) and hemp shives which provided lightweight, improved superficial finish and antibacterial properties. In order to assess the thermal comfort, an experimental analysis was finally conducted on a prototype of the orthosis, worn by a volunteer subject, with a thermal imaging camera. The beneficial effect of the ventilation pattern considered in terms of temperature and, accordingly, for the patient’s comfort, was highlighted also in relation to a neck orthosis previously designed.

Keywords: Additive manufacturing | Bio-composite | Orthosis modeling

[6] Calì M., Hajji B., Nitto G., Acri A., The Design Value for Recycling End-of-Life Photovoltaic Panels, Applied Sciences (Switzerland), 12(18), (2022). Abstract

Abstract: The production of electric energy has been increasingly deriving from renewable sources, and it is projected that this trend will continue over the next years. Among these sources, the use of solar energy is supposed to be considered the main future solution to global climate change and fossil fuel emissions. Since current photovoltaic (PV) panels are estimated to have an average life of 25–30 years, their disposal is very important for the recovery of materials already used and for introducing them again into other processing cycles. Innovative solutions are therefore needed to minimize the emissions of pollutants derived from the recycling of photovoltaic panels that no longer work. In this research, an analysis of data related to durability, recyclability rates, different possible design layouts and materials used in the design and manufacture of PV panels was conducted. Through a Design for Recycling (DfR) and a Design for Durability (DfD), the authors identified the optimal materials, the best geometries and geometric proportions as well as the most convenient geometric and dimensional tolerances in the couplings between the layers and the components that comprise the panel to attain the most current, efficient and effective solutions for recycling end-of-life (EoL) PV panels and for longer durability

Keywords: coupling tolerances | EcoDesign method | end-of-life management | recyclability rates | sustainability

[7] Calì M., Smart manufacturing technology, Applied Sciences (Switzerland), 11(17), (2021). Abstract

Abstract: This Special Issue of Applied Sciences provides a collection of original papers on smart manufacturing technology with the aim of: examining emerging aspects of digitalization in the industrial and biomedical fields, as well as in business management and sustainability; proposing and developing a new approach useful for companies, factories, and organizations to achieve greater innovation and productivity—as well as sustainability—by applying smart manufacturing technologies; and exploring new ideas and encouraging research directions so as to obtain autonomous and semiautonomous processes, high-quality products, and services with a greater integration and interconnection of resources while reducing costs. The advantages of new methods and experimental results obtained in the collected contributions are discussed promoting further design, implementation, and application in the various fields.

Keywords: Assessment of digitalization | Computational geometry and CAD/CAM | Enabling technologies | Machine learning | Machine tools and manufacturing equipment | Manufacturing networks and security | Sustainability | Virtual/augmented reality

[8] Pascoletti G., Aldieri A., Terzini M., Bhattacharya P., Calì M., Zanetti E.M., Stochastic PCA-based bone models from inverse transform sampling: Proof of concept for mandibles and proximal femurs, Applied Sciences (Switzerland), 11(11), (2021). Abstract

Abstract: Principal components analysis is a powerful technique which can be used to reduce data dimensionality. With reference to three-dimensional bone shape models, it can be used to generate an unlimited number of models, defined by thousands of nodes, from a limited (less than twenty) number of scalars. The full procedure has been here described in detail and tested. Two databases were used as input data: the first database comprised 40 mandibles, while the second one comprised 98 proximal femurs. The “average shape” and principal components that were required to cover at least 90% of the whole variance were identified for both bones, as well as the statistical distributions of the respective principal components weights. Fifteen principal components sufficed to describe the mandibular shape, while nine components sufficed to describe the proximal femur morphology. A routine has been set up to generate any number of mandible or proximal femur geometries, according to the actual statistical shape distributions. The set-up procedure can be generalized to any bone shape given a sufficiently large database of the respective 3D shapes.

Keywords: 3D model generator | Comparative anatomy | Mandible anatomy | Mesh morphing | PCA | Proximal femur anatomy | Stochastic bone models

[9] Calì M., Oliveri S.M., Calì P., Ambu R., A NURBS-based solid modeling to enhance rapid prototyping in the restoration of decorative elements, International Journal on Interactive Design and Manufacturing, 15(1), 129-132, (2021). Abstract

Abstract: In this research, we describe a computer-aided approach to improve the reconstruction method of decorum in architectural surfaces and sculpture. The effects of withdrawal caused by catalysis of mold in silicone was evaluated and simulated by a NURBS-based solid modelling. A tolerance analysis model was developed to predict manufacturing precision levels. In particular, differential increment along three dimensions was performed considering different volume distributions. The methodology was validated by experimental data obtained during the coffered ceiling restoration of Teatro Massimo Vittorio Emanuele in Palermo. The proposed methodology allowed the reconstruction of decorations or fragments of decoration with high accuracy.

Keywords: Geometric dimensioning and tolerancing | Restoration techniques | Reverse engineering | Silicon mold | Withdrawal

[10] Calì M., Oliveri S.M., Design of Active Tyre-Suspension-Seat System Through Multibody Model and Genetic Algorithms, International Review on Modelling and Simulations, 14(6), 496-503, (2021). Abstract

Abstract: The tyre-suspension-seat dynamic system, driveline and engine vibrations are generally considered in the vibrational field as the main factors that influence the particular feeling of comfort perceived by passengers on a vehicle. Hence, the development of several criteria and models for the optimal estimation of the design parameters of such systems. Among these parameters, the most detrimental impacting on the passenger comfort are undoubtedly acceleration and its variation. The two types of suspension systems (conventional passive suspension system and active suspension system) differ as the first foresees the spring-damper characteristics to be adjusted so that only one of several conflicting objectives (such as passenger comfort, road holding, and suspension deflection) is followed. In active suspension systems, instead, these objectives are balanced by the designer in a more efficient manner thanks to the feedback-controller actuator assembly. However, this approach presents some limitations linked to the extremely wide spectrum of magnitude and frequency of external forces that the tyre-suspension-seat system has to efficiently control and mitigate. It remains that in the existing optimisation models and systems time exposure limits established by unification agencies and road authorities are not generally considered. This paper illustrates the development of an active tyre-suspension-seat system control for passenger cars, using both a non-linear multibody model and Genetic Algorithm (GA) controls. A benefit of the proposed active tyre-suspension-seat system control is also to consider various time exposure limits and an active damping element. The main innovative element introduced by this work consists in having coupled an active control to passive mechanical parameters in order to minimize the seat acceleration. The 3 DoF multibody model, applied to a quarter body for symmetry reasons, treated road roughness as an input variable in the GA control so as to determine the vertical component of acceleration. The numerical and experimental applications of the proposed model to a specific case study allowed to validate the effectiveness of the active system towards the vibrations transmitted to the passenger.

Keywords: Acceleration variation | Active suspension system | Genetic algorithm | Passenger comfort | Vibrations

[11] Babic M., Lesiuk G., Marinkovic D., Calì M., Evaluation of microstructural complex geometry of robot laser hardened materials through a genetic programming model, Procedia Manufacturing, 55(C), 253-259, (2021). Abstract

Abstract: Surface-hardening process of steel materials by robot laser technologies can involve the challenge of modeling the determining process parameters through non-conventional tools in order to evaluate the quality of the heat treatment. In the current study a new method based on fractal geometry, used to determine the microstructural properties of laser hardened steels manufactured by anthropomorphic robots, is presented. The assumptions were that the microstructure of laser hardened steel can be studied as a complex structural geometry and the modeling of the analyzed complex geometries can be made through genetic programming for prediction purposes. The effect of process parameters and their joint combination on the final microstructures geometry of the heat treated steel was investigated. In particular, the influence of temperature, laser beam velocity, and impact angle were studied since they were showed in a preliminary study to be the process parameters that most significantly influenced the quality of the heat treated steel. The developed model reached a precision of the prediction equal to 98.59 %.

Keywords: Forecast model | Fractal geometry | Hardened steels | Laser beam process parameters | Microstructure geometry

[12] Calì M., Oliveri S.M., Biancolini M.E., Thread Couplings Stress Analysis by Radial Basis Functions Mesh Morphing, Lecture Notes in Mechanical Engineering, 114-120, (2021). Abstract

Abstract: Traditional analytical methods are approximate and need to be validated when it comes to predict the tensional behavior of thread coupling. Numerical finite element simulations help engineers come up with the optimum design, although the latter depends on the constraints and load conditions of the thread couplings which are often variable during the system functioning. The present work illustrates a new method based on Radial Basis Functions Mesh Morphing formulation to optimize the stress concentration in thread couplings which is subject to variable loads and constraints. In particular, thread root and fillet under-head drawings for metric ISO thread, which are the most commonly used thread connection, are optimized with Radial Basis Functions Mesh Morphing. In metric ISO threaded connection, the root shape and the fillet under the head are circular, and from shape optimization for minimum stress concentration it is well known that the circular shape becomes seldom optimal. The study is carried out to enhance the stress concentration factor with a simple geometric parameterization using two design variables. Radial Basis Functions Mesh Morphing formulation, performed with a simple geometric parameterization, has allowed to obtain a stress reduction of up to 12%; some similarities are found in the optimized designs leading to the proposal of a new standard. The reductions in the stress are achieved by rather simple changes made to the cutting tool.

Keywords: Feature-based modeling | Fillet under-head | Metric ISO thread | Radial basis functions | Thread root

[13] Calì M., Pascoletti G., Aldieri A., Terzini M., Catapano G., Zanetti E.M., Feature-Based Modelling of Laryngoscope Blades for Customized Applications, Lecture Notes in Mechanical Engineering, 206-211, (2021). Abstract

Abstract: Laryngoscopes are used as diagnostic devices for throat inspection or as an aid to intubation. Their blade must be geometrically compatible with patients’ anatomy to provide a good view to doctors with minimal discomfort to patients. For this reason, this paper was aimed to investigate the feasibility of producing customized blades. The customizable blade model was developed following a feature-based approach with eight morphological parameters. The thickness of such a blade was determined through numerical simulations of ISO certification tests, where the finite element mesh was obtained by morphing a ‘standard’ mesh. The following procedure was applied: the model was built from the selected parameters; the blade was tested in silico; finally, the blade was produced by additive manufacturing with an innovative biodegradable material (Hemp Bio-Plastic® -HBP-) claimed to feature superior mechanical properties. The procedure evidenced that the mechanical properties of current biodegradable materials are unsuitable for the application unless the certification norm is revised, as it is expected.

Keywords: Additive manufacturing | Biodegradable materials | Feature-based modeling | Laryngoscope blades | Mesh-morphing | Parametric drawing | Patient-specific design

[14] Babič M., Petrovič D., Sodnik J., Soldo B., Komac M., Chernieva O., Kovačič M., Mikoš M., Calì M., Modeling and classification of alluvial fans with dems and machine learning methods: A case study of Slovenian torrential fans, Remote Sensing, 13(9), (2021). Abstract

Abstract: Alluvial (torrential) fans, especially those created from debris-flow activity, often endan-ger built environments and human life. It is well known that these kinds of territories where human activities are favored are characterized by increasing instability and related hydrological risk; there-fore, treating the problem of its assessment and management is becoming strongly relevant. The aim of this study was to analyze and model the geomorphological aspects and the physical processes of alluvial fans in relation to the environmental characteristics of the territory for classification and prediction purposes. The main geomorphometric parameters capable of describing complex properties, such as relative fan position depending on the neighborhood, which can affect their formation or shape, or properties delineating specific parts of fans, were identified and evaluated through digital elevation model (DEM) data. Five machine learning (ML) methods, including a hybrid Euler graph ML method, were compared to analyze the geomorphometric parameters and physical characteristics of alluvial fans. The results obtained in 14 case studies of Slovenian torrential fans, validated with data of the empirical model proposed by Bertrand et al. (2013), confirm the validity of the developed method and the possibility to identify alluvial fans that can be considered as debris-flow prone.

Keywords: Debris flows | Digital elevation model | Geomorphometric parameters | Graph method | Torrential fan surfaces

[15] Martorelli M., Gloria A., Bignardi C., Calì M., Maietta S., Erratum: Design of Additively Manufactured Lattice Structures for Biomedical Applications (Journal of Healthcare Engineering (2020) 2020 (2707560) DOI: 10.1155/2020/2707560), Journal of Healthcare Engineering, 2021, (2021). Abstract

Abstract: In the article titled “Design of Additively Manufactured Lattice Structures for Biomedical Applications” [1], there was an error in the author’s name, where “Sverio Maietta” should be corrected to “Saverio Maietta.” e corrected author name is shown in the author group above.

[16] Dichio G., Calì M., Terzini M., Putame G., Zanetti E.M., Costa P., Audenino A.L., Engineering and manufacturing of a dynamizable fracture fixation device system, Applied Sciences (Switzerland), 10(19), (2020). Abstract

Abstract: The present work illustrates the dynamization of an orthopaedic plate for internal fracture fixation which is thought to shorten healing times and enhance the quality of the new formed bone. The dynamization is performed wirelessly thanks to a magnetic coupling. The paper shows the peculiarities of the design and manufacturing of this system: it involves two components, sliding with respect to each other with an uncertain coefficient of friction, and with a specific compounded geometry; there are stringent limits on component size, and on the required activation energy. Finally, the device belongs to medical devices and, as such, it must comply with the respective regulation (EU 2017/745, ASTM F382). The design of the dynamizable fracture fixation plate has required verifying the dynamic of the unlocking mechanism through the development of a parametric multibody model which has allowed us to fix the main design variables. As a second step, the fatigue strength of the device and the static strength of the whole bone-plate system was evaluated by finite element analysis. Both analyses have contributed to defining the final optimized geometry and the constitutive materials of the plate; finally, the respective working process was set up and its performance was tested experimentally on a reference fractured femur. As a result of these tests, the flexural stiffness of the bone-plate system resulted equal to 370 N/mm, while a maximum bending moment equal to 75.3 kNmm can be withstood without plate failure. On the whole, the performance of this dynamic plate was proved to be equal or superior to those measured for static plates already on the market, with excellent clinical results. At the same time, pre-clinical tests will be an interesting step of the future research, for which more prototypes are now being produced.

Keywords: Dynamizable plate | Fracture synthesis | Internal fixation | Mechanical tests | Medical device manufacturing | Stress analysis

[17] Calì M., Pascoletti G., Gaeta M., Milazzo G., Ambu R., A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM, Applied Sciences (Switzerland), 10(17), (2020). Abstract

Abstract: The most recent developments of Fused Deposition Modelling (FDM) techniques are moving the application of Additive Manufacturing (AM) technologies toward new areas of investigation such as the biomedical, aerospace, and marine engineering in addition to the more consolidated industrial and civil fields. Some specific characteristics are required for the components designed for peculiar applications, such as complex geometries, lightweight, and high strength as well as breathability and aesthetic appearance specifically in the biomedical field. All these design specifications could be potentially satisfied by manufacturing with 3D printing techniques. Moreover, the development of purpose-dedicated filaments can be considered a key factor to successfully meet all the requirements. In this paper, fabrication and applications of five new thermoplastic materials with fillers are described and analyzed. They are organic bio-plastic compounds made of polylactic acid (PLA) and organic by-products. The growing interest in these new composite materials reinforced with organic by-products is due to the reduction of production management costs and their low environmental impact. In this study, the production workflow has been set up and described in detail. The main properties of these new thermoplastic materials have been analyzed with a major emphasis on strength, lightweight, and surface finish. The analysis showed that these materials can be particularly suitable for biomedical applications. Therefore, two different biomedical devices were selected and relative prototypes were manufactured with one of the analyzed thermoplastic materials. The feasibility, benefits, and performance of the thermoplastic material considered for these applications were successfully assessed.

Keywords: Additive manufacturing capability | Biomedical applications | Design | Mechanical properties | Organic bio-composite filament | Roughness

[18] Calì M., Pascoletti G., Gaeta M., Milazzo G., Ambu R., New filaments with natural fillers for FDM 3D printing and their applications in biomedical field, Procedia Manufacturing, 51, 698-703, (2020). Abstract

Abstract: Current Fused Deposition Modelling (FDM) techniques have promoted the extension of 3D printing technologies to new applications ranging from the biomedical, aerospace, and submarine fields, to some specific applications in manufacturing and civil fields. The expansion of the fields of application, generally, entails considering peculiar characteristics, such as complex geometries or requirements as low density. Furthermore, the breathability, the pleasantness to the touch, aesthetic appearance and a strong visual identity, that can be achieved by means of 3D printing, are especially requested for some applications such as biomedical. For the improvement of the manufacturing of these parts, the design of a dedicated filament is a relevant issue to be taken into account. polylactic acid (PLA) and organic by-products from agricultural waste. The study includes a preliminary illustration of the main properties of these materials and a biomedical application of such bio-plastic compounds through experimental testing in order to assess the suitability to FDM printing. In particular, the performance in terms of lightweight, strength and roughness have been evaluated. The interesting final properties make these materials suitable for biomedical applications as it is shown in this study for the neck collar prototype reported. In addition, such innovative bio-composite materials allow reducing the cost of environmental impact as well as the production management costs.

Keywords: Additive manufacturing capability | Bio-plastic compounds | Biomedical applications | Mechanical properties | Organic bio-composite filament | Roughness

[19] Babič M., Mihelič J., Calì M., Complex network characterization using graph theory and fractal geometry: The case study of lung cancer DNA sequences, Applied Sciences (Switzerland), 10(9), (2020). Abstract

Abstract: This paper discusses an approach developed for exploiting the local elementary movements of evolution to study complex networks in terms of shared common embedding and, consequently, shared fractal properties. This approach can be useful for the analysis of lung cancer DNA sequences and their properties by using the concepts of graph theory and fractal geometry. The proposed method advances a renewed consideration of network complexity both on local and global scales. Several researchers have illustrated the advantages of fractal mathematics, as well as its applicability to lung cancer research. Nevertheless, many researchers and clinicians continue to be unaware of its potential. Therefore, this paper aims to examine the underlying assumptions of fractals and analyze the fractal dimension and related measurements for possible application to complex networks and, especially, to the lung cancer network. The strict relationship between the lung cancer network properties and the fractal dimension is proved. Results show that the fractal dimension decreases in the lung cancer network while the topological properties of the network increase in the lung cancer network. Finally, statistical and topological significance between the complexity of the network and lung cancer network is shown.

Keywords: Bioengineering | Complex networks | DNA geometry | Fractal dimension | Topological properties

[20] Calì M., Speranza D., Cella U., Biancolini M.E., Flying Shape Sails Analysis by Radial Basis Functions Mesh Morphing, Lecture Notes in Mechanical Engineering, 24-36, (2020). Abstract

Abstract: High fidelity calculation tools are well established in the nautical design sector where advanced numerical simulations are adopted for the prediction of the interaction of boat parts with surrounding fluids. The capability to couple such tools with efficient shape parametrization procedures offers the possibility to further improve the performance speeding up the design process. Radial Basis Functions (RBF) Mesh Morphing (MM) allows to quickly modify the shape within numerical domains without the need of updating the underlying CAD representation. The validity of this approach, widely adopted in aeronautical and automotive fields, is demonstrated in this paper by applying the method to the analysis of the flying shape of a symmetric spinnaker also investigating the importance of panel arrangement on sail characteristics. The performance, in terms of drive and side forces, is evaluated for different morphed geometries by RANS (Reynolds Averaged Navier Stokes) analyses. The RBF setup proved to be efficient and robust in generating a good quality of the morphed domain within the full range of amplification from the undeformed to the flying shape geometry.

Keywords: Drive and side force | Geometric parametrization | Mesh morphing | Radial basis functions | RANS analysis | Symmetric spinnaker

[21] Calì M., Oliveri S.M., Zuccarello S., Virtual Prototyping Design Method to Optimize Mechanical Spring Devices for MV Switch Disconnector, Lecture Notes in Mechanical Engineering, 458-469, (2020). Abstract

Abstract: This paper proposes a replicable methodology based on virtual prototyping design in multibody environment to optimize the functionality of Mechanical Spring Devices (MSD). These devises are assembled to control the shaft angular velocity in medium-voltage (MV) switch disconnector. The angular velocity of switch disconnector, moving the contact fingers, is directly linked to arcing time, which is the parameter that mainly influences accuracy, safety drives and a longer service life of device. Design of experiment (DoE) techniques, integrated with tridimensional geometric parametrization, were used in multibody environment to optimize the displacement of switch disconnector shaft. The best values of shape, stiffness and preload of the main cylindrical helical spring of MSD were obtained in every functional condition. Optimization results were compared with the limits values measured in homologation and with the acceptance limits values released by ENEL technical specifications for the MSD studied proving the effective methodology and the improvement obtained in terms of the safety of the system.

Keywords: Arcing time | DoE | Multibody model | MV electromechanical compartments | Parameterization

[22] Ambu R., Motta A., Calì M., Design of a Customized Neck Orthosis for FDM Manufacturing with a New Sustainable Bio-composite, Lecture Notes in Mechanical Engineering, 707-718, (2020). Abstract

Abstract: The interest in developing customized external orthopaedic devices, thanks to the advent of Additive Manufacturing (AM), has grown in recent years. Greater attention was focused on upper limb casts, while applications to other body’s parts, such as the neck, were less investigated. In this paper the computer aided design (CAD) modelling, assessment and 3D printing with fused deposition modelling (FDM) of a customized neck orthosis are reported. The modelling, based on anatomic data of a volunteer subject, was aimed to obtain a lightweight, ventilated, hygienic and comfortable orthosis compared to the produced medical devices generally used for neck injuries. CAD models with different geometrical patterns, introduced for lightening and improving breathability, were considered, specifically, a honeycomb pattern and an elliptical holes pattern. These models were structurally assessed by means of finite elements analysis (FEA). Furthermore, an innovative composite material was considered for 3D printing. The material, Hemp Bio-Plastic® (HBP), composed by polylactic acid (PLA) and hemp shives, offers different advantages including lightweight, improved superficial finish and antibacterial properties. The results obtained in terms of design methodology and manufacturing by 3D printing of a prototype have shown the feasibility to develop customized cervical orthoses, with potentially improved performance with respect to cervical collars available on the market also thanks to the use of the innovative composite material.

Keywords: Additive Manufacturing | Bio-composite | CAD | Neck orthosis

[23] Martorelli M., Gloria A., Bignardi C., Calì M., Maietta S., Design of Additively Manufactured Lattice Structures for Biomedical Applications, Journal of Healthcare Engineering, 2020, (2020). Abstract

Abstract: The special issue focuses on different features related to the design of additively manufactured lattice structures for biomedical applications. In many cases, the process-structure- property relationship and technical features are discussed from a morphological, mechanical, and functional point of view. In particular, an overview of the Additive Manufacturing processes, software methods, and design criteria, which allow the direct fabrication of 3D porous structures and lattices with tailored properties, are reported. Accordingly, the current special issue aims at providing new insights into the development of advanced devices and illustrates theoretical/experimental approaches used by researchers working in the field.

[24] Pascoletti G., Calì M., Bignardi C., Conti P., Zanetti E.M., Mandible Morphing Through Principal Components Analysis, Lecture Notes in Mechanical Engineering, 15-23, (2020). Abstract

Abstract: The aim of this research is to develop patient-specific 3D mandible models, based on a limited number of measurements taken on the patient. Twenty Computed Tomography scans were used to build the respective 3D cad models of the mandible. Fifteen of these models were given as an input to a Principal Component Analysis software, and eight ‘principal’ mandible morphologies were produced. The following step was to identify the most efficient landmarks to ‘weight’ these morphologies when building a patient-specific model. Two further mandible computed tomography scans (a ‘normal’ mandible and a ‘severely resorbed’ one) were used to test the full procedure and to assess its accuracy. The accuracy of the 3D morphed surface resulted to range between 0.025 and 3.235 mm for the ‘normal’ mandible and between 0.012 and 1.149 mm for the ‘severely resorbed’ one having used eight landmarks to morph a ‘standard’ mandible. This work demonstrates how patient-specific models can be obtained registering the position of a limited number of points (on panoramic x-ray or on the physical model), reaching a good accuracy. This allows performing patient-specific planning and numerical simulations even for those cases where a computed tomography scan would not be available. In fact, this procedure can be interfaced with mesh morphing algorithms to automatically build finite element models. The accuracy of the procedure can be further improved, widening the mandibles computed tomography scans database and optimizing landmarks position.

Keywords: Morphing | Patient-specific models | Principal Component Analysis

[25] Babič M., Calì M., Nazarenko I., Fragassa C., Ekinovic S., Mihaliková M., Janjić M., Belič I., Surface roughness evaluation in hardened materials by pattern recognition using network theory, International Journal on Interactive Design and Manufacturing, 13(1), 211-219, (2019). Abstract

Abstract: Performance characteristics of the products made of metallic materials such as wear resistance, fatigue strength, stability of gaps and strain between the connections, corrosion resistance, etc., depend to a large extent by the quality of their surfaces roughness. An interactive control of the manufacturing parameters which influence the surface roughness is particularly crucial in the construction of many mechanical components. The present paper devises a new method for statistical pattern recognition on samples produced by the process of robot laser hardening using network theory and describes its application to the determination of surface roughness. The method is based on the analysis of SEM images. Indeed the data characterizing the state of surface irregularities detected as extremely small segments contain indicators of surface roughness. Different methods of machine learning techniques designed to predict the surface roughness of robot laser hardened material are discussed.

Keywords: Machine interactive learning | Robot laser hardening | SEM images | Statistical pattern recognition | Surface roughness

[26] Babič M., Miliaresis G.C., Mikoš M., Ambu R., Calì M., New method for estimating fractal dimension in 3d space and its application to complex surfaces, International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2154-2159, (2019). Abstract

Abstract: The concept of "surface modeling" generally describes the process of representing a physical or artificial surface by a geometric model, namely a mathematical expression. Among the existing techniques applied for the characterization of a surface, terrain modeling relates to the representation of the natural surface of the Earth. Cartographic terrain or relief models as threedimensional representations of a part of the Earth's surface convey an immediate and direct impression of a landscape and are much easier to understand than two-dimensional models. This paper addresses a major problem in complex surface modeling and evaluation consisting in the characterization of their topography and comparison among different textures, which can be relevant in different areas of research. A new algorithm is presented that allows calculating the fractal dimension of images of complex surfaces. The method is used to characterize different surfaces and compare their characteristics. The proposed new mathematical method computes the fractal dimension of the 3D space with the average space component of Hurst exponent H, while the estimated fractal dimension is used to evaluate, compare and characterize complex surfaces that are relevant in different areas of research. Various surfaces with both methods were analyzed and the results were compared. The study confirms that with known coordinates of a surface, it is possible to describe its complex structure. The estimated fractal dimension is proved to be an ideal tool for measuring the complexity of the various surfaces considered.

Keywords: Fractal dimension | Hurst exponent H | Image analysis | Space component | Surface

[27] D'Urso A., Cutraro V., Catania C., Rapisarda F., Garaffo G., Calì M., Closed cycle drying process to retrain industrial sludge into construction products, International Journal on Advanced Science, Engineering and Information Technology, 9(6), 1783-1788, (2019). Abstract

Abstract: The article describes a new bio-inspired method for the Advanced Treatment of Industrial Sludge with a Closed Cycle Drying Process. This process represents an innovative way of treating sludge and other shovelable residues deriving from sludge treatment with centrifuges and other industrial processes taking place in large installations, such as refineries, steel mills, chemical plants, glass processing installations, cosmetics manufacturing facilities, pharmaceutical plants. The process is under development within the research project TAFIPACC funded by Horizon 2020. In particular, the process allows retraining Industrial Sludge into construction materials using the new Closed Cycle Drying Process. The study deals with sludge produced by an industrial treatment plant/industrial discharges and civil waste water in the industrial area of Priolo Gargallo (SR) Esso-Erg-Enichem petrochemical plants and by the municipalities of Priolo Gargallo, and Melilli. The plants produce about 30 cubic meters of sludge per day, disposed of 50% in underground dumps and for the other 50% in hazardous and non hazardous waste recovery plants. The difficulty in the treatment is mainly due to the nature of these muds, as pasty and difficult to mix with additives (cement, limestone, H2O, granulometric mix). The presence of bad odours derives from light and heavy hydrocarbons, aromatics, and organic solvents (benzene, toluene, styrene, xylene, etc), causing some problems to operators and inhabitants living in the areas surrounding the plants.

Keywords: Bio-inspired | De-pollution | Process design | Recycling | Sludge treatment

[28] Babič M., Marina N., Mrvar A., Dookhitram K., Calì M., A new method for biostatistical miRNA pattern recognition with topological properties of visibility graphs in 3D space, Journal of Healthcare Engineering, 2019, (2019). Abstract

Abstract: Visibility is a very important topic in computer graphics and especially in calculations of global illumination. Visibility determination, the process of deciding which surface can be seen from a certain point, has also problematic applications in biomedical engineering. The problem of visibility computation with mathematical tools can be presented as a visibility network. Instead of utilizing a 2D visibility network or graphs whose construction is well known, in this paper, a new method for the construction of 3D visibility graphs will be proposed. Drawing graphs as nodes connected by links in a 3D space is visually compelling but computationally difficult. Thus, the construction of 3D visibility graphs is highly complex and requires professional computers or supercomputers. A new method for optimizing the algorithm visibility network in a 3D space and a new method for quantifying the complexity of a network in DNA pattern recognition in biomedical engineering have been developed. Statistical methods have been used to calculate the topological properties of a visibility graph in pattern recognition. A new nhyper hybrid method is also used for combining an intelligent neural network system for DNA pattern recognition with the topological properties of visibility networks of a 3D space and for evaluating its prospective use in the prediction of cancer.

[29] Calì M., Oliveri S.M., Evangelos Biancolini M., Sequenzia G., An integrated approach for shape optimization with mesh-morphing, Lecture Notes in Mechanical Engineering, 311-322, (2019). Abstract

Abstract: Although the CAD parameters allow to update easily the geometrical model, the numerical models updating into Finite Elements (FE) software with different mesh result to be often heavy, due to the necessity both to create new mesh and to make usually time consuming and complex CAE calculations for updating the loading conditions. The aim of the present research is to devise a reliable methodology and at the same time to reduce computational burden in the shape optimization studies of mechanical components. In particular, an integrated Multibody (MB) and Mesh-Morphing (MM) approach was developed to perform shape optimization, in order to reduce maximum tensions. Using the RBF Morph ACT Extension plugin implemented in the commercial solver FEM ANSYS® Mechanical vers. 18.2 along with the commercial MB software MSC ADAMS® vers. 2017, shape optimizations can be obtained in a very short time, by acting directly at the mesh so updating node positions and mesh elements geometry without bringing different geometrical models of the component into the FE environment. To validate the methodology, a crankshaft for a high performance Internal Combustion Engine (I.C.E.) was chosen, as case study, to optimize the fillet zones between web and pin.

Keywords: Crankshaft | FEA | Fillet zones | Multibody | Stress analysis

[30] D'Arrigo G., Mio A., Favaro G., Calabretta M., Sitta A., Sciuto A., Russo M., Calì M., Oliveri M., Rimini E., Mechanical properties of amorphous Ge<inf>2</inf>Sb<inf>2</inf>Te<inf>5</inf> thin layers, Surface and Coatings Technology, 355, 227-233, (2018). Abstract

Abstract: The working principle of a Phase Change Memory (PCM) cell exploits the repeated reversible transition between a crystalline and an amorphous phase of chalcogenide alloys typically Ge2Sb2Te5, that are characterized respectively by a high (SET) and a low (RESET) conductive state. The change in density between the two phases (6%) induces a very high compressive stress to the active amorphous region by the surrounding crystalline materials. Moreover, the physical iterative transformation between crystalline and amorphous phase transformation introduces a swelling and deswelling effect. This is one of the key failure mechanisms that are limiting the reliability of the final integration of the PCM system. Knowledge of the mechanical properties of the amorphous phase is then an important factor. Amorphous structure, i. e. its short-range order, depends on the adopted formation procedure. In this paper we analyze the mechanical characteristics of sputtered amorphous Ge2Sb2Te5 thin layers and the modification introduced by ion irradiation, a procedure adopted to simulate the amorphous state produced by melt quenching. Measurements of Young's Modulus and Hardness were performed using Ultra High-Nano Indentation on plane samples. The values of both quantities increase of about 10–20% in the 30 keV Ge+ irradiated samples. This trend is due to the reduction of homopolar wrong bonds (Ge–Ge and Te–Te) present in the as deposited film. Thermal spikes associated to the impinging ion cause a local atomic rearrangement that results in a structure similar to that of the crystalline phase. The investigation was extended to cantilevers of length in the range 10–200 μm, with a layer of 100 nm Ge2Sb2Te5 deposited on 280 nm thick SiN. The cantilever modal analysis and the out of plane deflection measurements were correlated using a Finite Element modeling, that makes use of the mechanical values measured by Ultra high Nano Indentation. After deposition the amorphous Ge2Sb2Te5 layer is subject to a compressive mechanical shrinkage, this internal stress is released after ion implantation.

Keywords: Cantilever | Nano-indentation | Phase change material

[31] Calì M., Oliveri S.M., Cella U., Martorelli M., Gloria A., Speranza D., Mechanical characterization and modeling of downwind sailcloth in fluid-structure interaction analysis, Ocean Engineering, 165, 488-504, (2018). Abstract

Abstract: Computational Fluid Dynamics (CFD), as early used in the design stage, helps engineers to come up with the optimum design of a sail in a reasonable timeframe. However, traditional CFD tools are approximate and need to be validated when it comes to predicting the dynamic behaviour of non-developable shape with high camber and massively detached flow around thin and flexible membranes. Some of these approximations are related to the implementation of the constitutive material characteristics and assumption of their isotropic properties, while the sail aerodynamic performance is strongly influenced by the arrangement of sail panels as well as the orientation of the fibres in the composite structure. The present paper offers a methodology that enhances the understanding of the influence of panel arrangement and fibre orientation on sail performance. Fluid-structure-interaction (FSI) in a symmetric spinnaker was studied through an integrated CFD-CSM (Computational Structural Mechanics) analysis. A suitable triangular membrane element formulation of sail was adopted and the constitutive characteristics (elasticity and damping) of the Nylon superkote 75 were implemented in CSM model after being experimentally measured. The aerodynamic performance of sail in terms of drive force and side force was evaluated using both Reynolds Averaged Navier Stokes Simulations (RANS) and Shear Stress Transport (SST) turbulence model with a finite volume approach. A comparison between different panel arrangements was carried out under altered downwind flow conditions of wind speed and wind angle. Digital photogrammetry was employed to create the 3D reconstruction of the sail's flying shape and validate the results obtained by aeroelastic analysis.

Keywords: CFD-CSM analysis | Flying shape photogrammetry acquisition | Sail panel arrangement | SST model | Triangular membrane elements

[32] Calì M., Ambu R., Advanced 3D photogrammetric surface reconstruction of extensive objects by UAV camera image acquisition, Sensors (Switzerland), 18(9), (2018). Abstract

Abstract: This paper proposes a replicable methodology to enhance the accuracy of the photogrammetric reconstruction of large-scale objects based on the optimization of the procedures for Unmanned Aerial Vehicle (UAV) camera image acquisition. The relationships between the acquisition grid shapes, the acquisition grid geometric parameters (pitches, image rates, camera framing, flight heights), and the 3D photogrammetric surface reconstruction accuracy were studied. Ground Sampling Distance (GSD), the necessary number of photos to assure the desired overlapping, and the surface reconstruction accuracy were related to grid shapes, image rate, and camera framing at different flight heights. The established relationships allow to choose the best combination of grid shapes and acquisition grid geometric parameters to obtain the desired accuracy for the required GSD. This outcome was assessed by means of a case study related to the ancient arched brick Bridge of the Saracens in Adrano (Sicily, Italy). The reconstruction of the three-dimensional surfaces of this structure, obtained by the efficient Structure-From-Motion (SfM) algorithms of the commercial software Pix4Mapper, supported the study by validating it with experimental data. A comparison between the surface reconstruction with different acquisition grids at different flight heights and the measurements obtained with a 3D terrestrial laser and total station-theodolites allowed to evaluate the accuracy in terms of Euclidean distances.

Keywords: Accuracy | Acquisition grid optimization | Digital surfaces models | Ground sampling distance | Structure-from-motion algorithms

[33] Zanetti E.M., Ciaramella S., Calì M., Pascoletti G., Martorelli M., Asero R., Watts D.C., Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs, Dental Materials, 34(8), 1235-1245, (2018). Abstract

Abstract: Objective: To investigate the influence of implant design on the change in the natural frequency of bone-implant system during osseointegration by means of a modal 3D finite element analysis. Methods: Six implants were considered. Solid models were obtained by means of reverse engineering techniques. The mandibular bone geometry was built-up from a CT scan dataset through image segmentation. Each implant was virtually implanted in the mandibular bone. Two different models have been considered, differing in the free length of the mandibular branch (‘long branch’ and ‘short branch’) in order to simulate the variability of boundary conditions when performing vibrometric analyses. Modal analyses were carried out for each model, and the first three resonance frequencies were assessed with the respective vibration modes. Results: With reference to the ‘long branch’ model, the first three modes of vibration are whole bone vibration with minimum displacement of the implant relative to bone, with the exception of the initial condition (1% bone maturation) where the implant is not osseointegrated. By contrast, implant displacements become relevant in the ‘short branch’ model, unless osseointegration level is beyond 20%. The difference between resonance frequency at whole bone maturation and resonance frequency at 1% bone maturation remained lower than 6.5% for all modes, with the exception of the third mode of vibration in the ‘D’ implant where this difference reached 9.7%. With reference to the ‘short branch’ considering the first mode of vibration, 61–68% of the frequency increase was achieved at 10% osseointegration; 72–79% was achieved at 20%; 89–93% was achieved at 50% osseointegration. The pattern of the natural frequency versus the osseointegration level is similar among different modes of vibration. Significance: Resonance frequencies and their trends towards osseointegration level may differ between implant designs, and in different boundary conditions that are related to implant position inside the mandible; tapered implants are the most sensitive to bone maturation levels, small implants have very little sensitivity. Resonance frequencies are less sensitive to bone maturation level beyond 50%.

Keywords: Bone properties | CAD | Dental materials | Endosteal implants | Finite element analysis | Implant stability | Material properties | Osseointegration | Reverse engineering

[34] Zanetti E.M., Pascoletti G., Calì M., Bignardi C., Franceschini G., Clinical assessment of dental implant stability during follow-up: What is actually measured, and perspectives, Biosensors, 8(3), (2018). Abstract

Abstract: The optimization of loading protocols following dental implant insertion requires setting up patient-specific protocols, customized according to the actual implant osseointegration, measured through quantitative, objective methods. Various devices for the assessment of implant stability as an indirect measure of implant osseointegration have been developed. They are analyzed here, introducing the respective physical models, outlining major advantages and critical aspects, and reporting their clinical performance. A careful discussion of underlying hypotheses is finally reported, as is a suggestion for further development of instrumentation and signal analysis.

Keywords: Damping | Early loading | Functional loading | Implant stability | Modal analysis | Osseointegration | Resonance frequency | Reverse torque | Ultrasound

[35] Calì M., Zanetti E.M., Oliveri S.M., Asero R., Ciaramella S., Martorelli M., Bignardi C., Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems, Dental Materials, 34(3), 460-469, (2018). Abstract

Abstract: Objective: To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Methods: Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS® v. 17.0. Static linear analyses were also carried out. Results: ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. Significance: The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages.

Keywords: Bone properties | CAD | Dental materials | Endosteal implants | Finite element analysis | Material properties | Osseointegration | Plateau implants

[36] Calì M., Oliveri S.M., Ambu R., Fichera G., An integrated approach to characterize the dynamic behaviour of a mechanical chain tensioner by functional tolerancing, Journal of Mechanical Engineering, 64(4), 245-257, (2018). Abstract

Abstract: Assembled systems composed of flexible components are widely used in mechanics to dampen vibrations and store or dissipate energy. Often, the flexible components of these systems are assembled via non-linear sliding contacts and yielding constraints. Geometric non-linearity along with non-linearity of stiffness, damping and contact pressure between flexible components greatly complicate the dynamic characterization of these assemblies. Therefore, such assemblies are characterised almost exclusively by means of experimental testing. This research analyses how classic ASME and ISO tolerance standards can be used to guarantee and control the conformity of these assembled systems with their functional requirements limiting the number of experimental tests. In particular the dependence of the dynamic behaviour upon functional tolerances is studied for a mechanical tensioner in a chain drive timing system of an internal combustion engine (ICE). The semi empirical methodology is based on displacement measurements and modal analyses. A multibody model with few degrees of freedom (MBM-FDoF) is proposed as the first approximation to reproduce the variability of the dynamic behaviour of the tensioner considering variations in functional tolerances.

Keywords: ASME-ISO tolerance specification | Deformation energy | Multibody model | Reverse engineering | Tensioner

[37] Calì M., Oliveri S.M., Application of an effective SIMP method with filtering for topology optimization of motorcycle tubular frame, International Review of Mechanical Engineering, 11(11), 836-844, (2017). Abstract

Abstract: The complexity of optimal design of the motorcycle tubular frame is due to the conflicting nature of various main design criteria, namely, reduction in the frame mass, increase in torsional stiffness, restriction of bending stiffness and minimization of maximum structural stress. Frame optimization is achieved when different kinds of decision parameters are involved: discrete (e.g. standardized tube diameters available on the market) and continuous (e.g. angles and fillets). Nowadays, optimal design of motorcycle tubular frames still appears to be the result of engineers’ creativity and experience, as well as of further suggestions by test drivers. In the design workflow of tubular motorcycle frames Topology Optimization (TO) technique it is not a well-established practice. Thus, this paper aims to discuss the applicability of Solid Isotropic Material with Penalization (SIMP) method with filtering as it is likely to perform an effective topology optimization of motorcycle tubular frames. After tubular frame 3d acquisition, effective design domain was defined and topology optimization of a multi-load case was implemented in a commercial software. The case study of the “DUCATI 600SS” frame, consisting of three different cross-section tubes in chrome-molybdenum alloy steel, where the motor performs the stiffening function, provides the results to support the methodology by validating it with experimental data.

Keywords: 3d acquisition | Cross-section tubes | Design method | Multibody numerical simulations | Tube bending and torsion

[38] Speranza D., Citro D., Padula F., Motyl B., Marcolin F., Calì M., Martorelli M., Additive manufacturing techniques for the reconstruction of 3D fetal faces, Applied Bionics and Biomechanics, 2017, (2017). Abstract

Abstract: This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases.

[39] Calì M., Oliveri S.M., Gloria A., Martorelli M., Speranza D., Comparison of Commonly Used Sail Cloths through Photogrammetric Acquisitions, Experimental Tests and Numerical Aerodynamic Simulations, Procedia Manufacturing, 11, 1651-1658, (2017). Abstract

Abstract: The use of polymer composites has been increasing over the years and nowadays the requirements for designing high performance and lightweight fabrics and laminates for sail manufacturing have become more stringent than ever. The present paper offers an effective methodology that enhances the understanding of the influence of fibres orientation and arrangement of panels on sail performance. Constitutive characteristics of the ten commonly used sail cloths are experimentally measured and their influence on sail dynamic performance is compared using an aerodynamic approach. As expected also in industry 4.0 the method allows to control the production process and final product optimization.

Keywords: Aerodynamic coefficient | Apparent wind angle (AWA) | Apparent Wind Speed (AWS) | CFD analysis | Digital photogrammetry | RE | Turbulence model

[40] Zanetti E.M., Aldieri A., Terzini M., Calì M., Franceschini G., Bignardi C., Additively manufactured custom load-bearing implantable devices: Grounds for caution, Australasian Medical Journal, 10(8), 694-700, (2017). Abstract

Abstract: Background Additive manufacturing technologies are being enthusiastically adopted by the orthopaedic community since they are providing new perspectives and new possibilities. First applications were finalised for educational purposes, pre-operative planning, and design of surgical guides; recent applications also encompass the production of implantable devices where 3D printing can bring substantial benefits such as customization, optimization, and manufacturing of very complex geometries. The conceptual smoothness of the whole process may lead to the idea that any medical practitioner can use a 3D printer and her/his imagination to design and produce novel products for personal or commercial use. Aims Outlining how the whole process presents more than one critical aspects, still demanding further research in order to allow a safe application of this technology for fully-custom design, in particular confining attention to orthopaedic/orthodontic prostheses defined as components responding mainly to a structural function. Methods Current knowledge of mechanical properties of additively manufactured components has been examined along with reasons why the behaviour of these components might differ from traditionally manufactured components. The structural information still missing for mechanical design is outlined. Results Mechanical properties of additively manufactured components are not completely known, and especially fatigue limit needs to be examined further. Conclusion At the present stage, with reference to load-bearing implants subjected to many loading cycles, the indication of custom-made additively manufactured medical devices should be restricted to the cases with no viable alternative.

Keywords: Additive manufacturing | Fast prototyping | Fatigue resistance | Orthodontic implants | Orthopaedic implants | Prostheses

[41] Calì M., Oliveri S.M., Sequenzia G., Fatuzzo G., An effective model for the sliding contact forces in a multibody environment, Lecture Notes in Mechanical Engineering, 0, 675-685, (2017). Abstract

Abstract: This work describes an integrated method of 3D modelling algorithms with a modal approach in a multibody environment which provides a slimmer and more efficient simulation of flexible component contacts realistically reproducing system impacts and vibrations. A non-linear numerical model of the impulse contact forces based on the continuity approach of Lankarani and Nikravesh is developed. The model developed can evaluate deformation energy taking into account the material's characteristics, surface geometries and the velocity variations of the bodies in contact. ADAMS®-type modelling is applied to the sliding contacts of the links of a chain and its mechanical tensioner (“blade”) in the timing of an internal combustion engine. The blade was discretized by subdividing it into smaller components inter-connected with corresponding centres of gravity through 3D General Forces. Static and dynamic tests were performed to evaluate the stiffness, damping and friction parameters for the multibody model and to validate the methodology.

Keywords: Flexible body | Friction forces | Hysteresis damping | Impact | Slip

[42] Calì M., Oliveri S.M., Fatuzzo G., Sequenzia G., Error control in UAV image acquisitions for 3D reconstruction of extensive architectures, Lecture Notes in Mechanical Engineering, 0, 1211-1220, (2017). Abstract

Abstract: This work describes a simple, fast, and robust method for identifying, checking and managing the overlapping image keypoints for 3D reconstruction of large objects with numerous geometric singularities and multiple features at different lighting levels. In particular a precision 3D reconstruction of an extensive architecture captured by aerial digital photogrammetry using Unmanned Aerial Vehicles (UAV) is developed. The method was experimentally applied to survey and reconstruct the 'Saraceni' Bridge' at Adrano (Sicily), a valuable example of Roman architecture in brick of historical/cultural interest. The variety of features and different lighting levels required robust self-correlation techniques which would recognise features sometimes even smaller than a pixel in the digital images so as to automatically identify the keypoints necessary for image overlapping and 3D reconstruction. Feature Based Matching (FBM) was used for the low lighting areas like the intrados and the inner arch surfaces, and Area Based Matching (ABM) was used in conjunction to capture the sides and upper surfaces of the bridge. Applying SIFT (Scale Invariant Feature Transform) algorithm during capture helped find distinct features invariant to position, scale and rotation as well as robust for the affinity transformations (changes in scale, rotation, size and position) and lighting variations which are particularly effective in image overlapping. Errors were compared with surveys by total station theodolites, GPS and laser systems. The method can facilitate reconstruction of the most difficult to access parts like the arch intrados and the bridge cavities with high correlation indices.

Keywords: Architectural reconstruction | Area Based Matching | Feature Based Matching | Photogrammetry | SIFT algorithm

[43] Calì M., Lo Savio F., Accurate 3D reconstruction of a rubber membrane inflated during a bulge test to evaluate anisotropy, Lecture Notes in Mechanical Engineering, 0, 1221-1231, (2017). Abstract

Abstract: This paper describes a methodology for carrying out an accurate mechanical characterization of an amorphous hyperelastic rubber-like material (carbon black filled natural rubber) by a custom-made experimental setup for bulge testing. Generally, during sample testing the slight anisotropy of the internal polymer structures, primarily due to the calendering process is neglected. This methodology is able to evaluate these effects. A hydraulic circuit inflates a thin disk of rubber blocked between two clamping flanges with adjustable flow rate, thus controlling the speed of deformation of the sample. The device has a sliding crossbar, which moves proportionally as the membrane inflates. A stereoscopic technique is able to capture with pixel precision and identify the strain on a silk-screen grid printed on the upper surface of the sample. For each acquisition step, the epipolar geometry of the image pairs is represented in a single absolute reference system integral to the experimental setup. The acquired images are processed using geometrical algorithms and different filters. In this way an extremely precise 3D reconstruction of the sample is created during the bulge test. Slight anisotropic behaviors due to the rubber calendering process have been observed and measured since the first steps of the bulge test, where the strains are minimal and principal strain direction in equibiaxial tension test are determined.

Keywords: Calendered rubber | Equibiaxial Bulge Test | Hyperelastic Materials | Stereoscopic Method | Transverse Isotropy

[44] Calì M., Speranza D., Martorelli M., Dynamic spinnaker performance through digital photogrammetry, numerical analysis and experimental tests, Lecture Notes in Mechanical Engineering, 0, 585-595, (2017). Abstract

Abstract: Sail manufacture has undergone significant development due to sailing races like the America’s Cup and the Volvo around the World Race. These competitions require advanced technologies to help increase sail performance. Hull design is fundamentally important but the sails (the only propulsion instrument) play a key role in dynamic of sailboats. Under aerodynamic loads, sail cloth deforms, the aerodynamic interaction is modified and the pressure on the sails is variously distributed resulting in performance inconsistencies. The interaction between fluid and structure necessitates a solution which combines aerodynamic and structural numerical simulations. Furthermore, in numerical simulations the aeroelastic sail characteristics must be known accurately. In this paper, the dynamic performance of a Spinnaker was studied. Digital photogrammetry was used to acquire the images, make the 3D reconstruction of the sail and validate the models in Computational Fluid Dynamics (CFD) analysis. Orthotropic constitutive characteristics of ten different sail cloths were measured by experimental test. The methodology allowed to compare dynamic performance in terms of forces, pressure and vibration for the different sail cloths and different fiber orientations.

Keywords: CFD analysis | Detached eddy simulations | Pressure distributions | Sail aerodynamics | Turbulence models

[45] Fatuzzo G., Sequenzia G., Oliveri S.M., Barbagallo R., Calì M., An integrated approach to customize the packaging of heritage Artefacts, Lecture Notes in Mechanical Engineering, 0, 167-175, (2017). Abstract

Abstract: The shipment of heritage artefacts for restoration or temporary/travelling exhibition has been virtually lacking in customised packaging. Hitherto, packaging has been empirical and intuitive which has unnecessarily put the artefacts at risk. So, this research arises from the need to identify a way of designing and creating packaging for artefacts which takes into account structural criticalities to deal with deteriorating weather, special morphology, constituent materials and manufacturing techniques. The proposed methodology for semi-automatically designing packaging for heritage artefacts includes the integrated and interactive use of Reverse Engineering (RE), Finite Element Analysis (FEA) and Rapid Prototyping (RP). The methodology presented has been applied to create a customised packaging for a small C3rd BC bronze statue of Heracles (Museo Civico “F.L. Belgiorno” di Modica-Italy). This methodology has highlighted how the risk of damage to heritage artefacts can be reduced during shipping. Furthermore, this approach can identify each safety factor and the corresponding risk parameter to stipulate in the insurance policy.

Keywords: Cultural heritage | FEM | Laser scanning | Packaging | Rapid prototyping

[46] Calì M., Sequenzia G., Oliveri S.M., Fatuzzo G., Meshing angles evaluation of silent chain drive by numerical analysis and experimental test, Meccanica, 51(3), 475-489, (2016). Abstract

Abstract: A methodology for integrating the CAD-CAE design of a chain drive system is presented by evaluating meshing angles. The methodology correlates the angles of engagement with transverse vibrations and the tensile force of the chain links, showing that the dynamic behaviour of a chain drive can be significantly improved by fine tuning the meshing angles. An objective parameter was introduced to evaluate divergence from correct meshing. Here the methodology is applied to optimize the timing chain system of a high power V12 quadruple overhead camshaft engine. The reliability of the method relies on multibody modelling all the components and accurate experimental tests. Correlating the experimental measurements provided exact modelling of the contact forces, exact evaluation of stiffness and damping values and precise dynamic modelling of the tensioners and guides. Finally, the dynamic performance of the two different primary stage chain drive layouts were compared.

Keywords: Chain stiffness | Contact force model | Meshing impact | Multibody dynamics | Tensioner | Transverse vibration

[47] Sequenzia G., Oliveri S.M., Fatuzzo G., Calì M., An advanced multibody model for evaluating rider's influence on motorcycle dynamics, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 229(2), 193-207, (2015). Abstract

Abstract: The dynamics of a high-performance motorcycle are greatly influenced by the rider's weight and movements especially when the power-to-weight ratio is very high. Generally in motor vehicles, the driver's/rider's weight is a significant fraction of the entire system. This work is about ADAMS/View multibody modelling of a motorcycle and virtual rider who simulates handlebar interaction and saddle sliding. In the literature, the rider's influence is unrealistic being limited to considering him as a concentrated mass or in other cases as a fixed passive system. Even vehicle modelling is often inaccurate, referring at best to simplified models of rigid bodies. In this work, the vehicle and rider have been accurately modelled to most realistically reproduce the dynamic behaviour of the system. The motorcycle was modelled with 12 bodies incorporating concentrated flexibility for the two suspension units and considering the chassis as a flexible body using modal synthesis. The virtual rider is made up of 15 rigid bodies and has 28 degrees of freedom. To study the effects on the motorcycle of the rider's movements as well as the motorcycle's dynamics and performance, a monitoring system similar to that in the literature was used to read handlebar torque and engine and braking torque. Furthermore, in the literature there are simulations of standard manoeuvres whereas in this work an entire lap of Monza was simulated. There were simulations of a fixed and mobile rider validating the model in advance and thereafter monitoring the most significant dynamic parameters. The multibody model provides useful results at the design phase and insights into the whole vehicle/rider dynamic to setup all the reference parameters for immediately evaluating system effects.

Keywords: Multibody | Path tracking | Rider's effects | Rider-motorcycle system | Steering torque

[48] Sequenzia G., Oliveri S.M., Calì M., Experimental methodology for the tappet characterization of timing system in I.C.E., Meccanica, 48(3), 753-764, (2013). Abstract

Abstract: The aim of present work is the containment of the inertia forces, the stiffness components optimization and the fit tolerances of valve train in internal combustion engines (I.C.E.) 4T. The proposed methodology allows, through the development of a test machine, the evaluation of axial stiffness of tappet depending on eccentricity of the cam tappet contact, performing a functional analysis that simulate the behaviour of the system in operational condition, even if, some adjustment of tolerances of the fit between tappet and his guide, occurred. The dynamic study of the valve train, through modern computer codes, is performed by connecting lumped masses, springs and dampers that characterize each element. In numerical models the tappet is represented as constituted by the tappet and by the hydraulic element. Each of these elements is characterized by stiffness and mass. The structural rigidity of the tappet has, in fact, important effects on the dynamic behaviour of the entire valve train. The test machine makes possible the choice of the dimensional and geometrical tolerances of the fit between tappet and his guide; allows furthermore the evaluation of errors occurred during construction and integration phase. In addition, the test machine is also suitable for reverse engineering applications, makes it possible to automatically draw the cam profile in polar coordinates. © 2012 Springer Science+Business Media Dordrecht.

Keywords: Cam | Dynamics | Fit tolerance | I.C.E | Tappet | Timing system

[49] Sequenzia G., Oliveri S., Calabretta M., Fatuzzo G., Cali M., A new methodology for calculating and modelling non-linear springs in the valve train of internal combustion engines, SAE 2011 World Congress and Exhibition, (2011). Abstract

Abstract: The valve return springs in the distribution chain of internal combustion engines constitute a fundamental component for the duration, efficiency and performance of the engine itself [1,2,3,4]. This is even more true for high-performance engines whose mechanical and thermal power leads to the premature deterioration of poorly designed components. The elevated forces in such engines necessitate, where the valve springs have not been substituted by alternative kinematic systems, progressive springs, i.e. springs with variable stiffness. Despite this fact, the literature does not contain any univocal methods for defining the geometry of this type of spring. In the present study, the question is approached on the basis of a numerical-iterative calculation, providing a general methodology which, starting from data regarding the functioning of the engine and the geometric volumes to be respected, leads to the definition of the optimal geometry of the helix, taking account of the trend of the stiffness, of the natural frequencies and of the loads over the entire operating range of the spring. Tests on springs calculated in this way were performed using multi-body software, in order to verify the correspondence between the initial design data and the real behaviour of the geometry generated. © 2011 SAE International.

[50] Sequenzia G., Oliveri S., Calabretta M., Fatuzzo G., Cali M., A new methodology for calculating and modelling non-linear springs in the valve train of internal combustion engines, SAE Technical Papers, (2011). Abstract

Abstract: The valve return springs in the distribution chain of internal combustion engines constitute a fundamental component for the duration, efficiency and performance of the engine itself [1,2,3,4]. This is even more true for high-performance engines whose mechanical and thermal power leads to the premature deterioration of poorly designed components. The elevated forces in such engines necessitate, where the valve springs have not been substituted by alternative kinematic systems, progressive springs, i.e. springs with variable stiffness. Despite this fact, the literature does not contain any univocal methods for defining the geometry of this type of spring. In the present study, the question is approached on the basis of a numerical-iterative calculation, providing a general methodology which, starting from data regarding the functioning of the engine and the geometric volumes to be respected, leads to the definition of the optimal geometry of the helix, taking account of the trend of the stiffness, of the natural frequencies and of the loads over the entire operating range of the spring. Tests on springs calculated in this way were performed using multi-body software, in order to verify the correspondence between the initial design data and the real behaviour of the geometry generated. Copyright © 2011 SAE International.

[51] Lanzini A., Leone P., Santarelli M., Asinari P., Calì M., Borchiellini R., Performances and degradation phenomena of solid oxide anode supported cells with LSM and LSCF cathodes: An experimental assessment, Journal of Fuel Cell Science and Technology, 6(1), 0110201-01102014, (2009). Abstract

Abstract: The performance of solid oxide fuel cells is affected by various polarization losses, usually grouped in Ohmic, activation, and concentration polarizations. Under typical operating conditions, these polarization losses are largely dependent on cell materials, electrode microstructures, and cell geometry: as an example, the performance of a tubular cell is strongly limited by the Ohmic polarization due to the long current path of electrons, while in a planar cell each of these losses has a comparable effect. It is therefore of interest, in the case of planar geometry, to investigate the main performance limiting factors. In this paper, a performance evaluation of planar circular-shaped sealless SOFC cells was performed. Two different designs of planar cells are considered. Both have a porous NiO-YSZ (yttria stabilized zirconia) anode as mechanical support, a NiO-YSZ anode active layer, and an YSZ electrolyte, and they only differ in the cathode design: (1) strontium doped lanthanum manganate (LSM)-YSZ cathode functional layer and LSM cathode current collector layer; (2) yttria doped ceria blocking layer and lanthanum strontium cobalt ferrite oxide (LSCF) functional layer. The characterization was performed by taking V-I measurements over a range of temperatures between 650°C and 840°C with hydrogen as fuel and air as oxidant. The experimental data analysis consisted in the analysis of some typical performance indicators (maximum power density (MPD); current density at 0.7 V). The dependence of the cell performance on the various polarization contributions was rationalized on the basis of an analytical model- through a parameter estimation of the experimental data-devoted to the determination of the main polarization losses. Based on the results of the investigation, it is concluded that LSCF cathodes are really effective in decreasing the cathode activation polarization, allowing the reduction in operating temperature. Copyright © 2009 by ASME.

[52] Oliveri S.M., Sequenzia G., Cali M., Flexible multibody model of desmodromic timing system, Mechanics Based Design of Structures and Machines, 37(1), 15-30, (2009). Abstract

Abstract: In the present study, the authors performed a dynamic analysis of the desmodromic timing system, where the valve lifter is realized by conjugate cams, using a methodology of modal synthesis to examine the effects of the deformability of the principal parts, and evaluating the deformations and vibrations of the components under various operating conditions. With this aim, a virtual 3D model and a multibody calculation program were used in a concentrated parameter model, requiring the choice of numerous parameters that greatly affect the results of the analysis. It was therefore important that, within the variability range of these parameters, the values adopted rendered the behavior of the analytical model as close as possible to that of the real system. Finally, the need to evaluate some of the more important aspects of the dynamic system (such as values of clearances, stiffnesses and damping at contacts, and stiffnesses and damping of shafts and belt) made it necessary to validate the model through comparison with experimental trials conducted to determine the valve motion and to measure the strain on the distribution belt.

Keywords: Desmodromic timing system | Dynamics | Flexible bodies | Modal synthesis

[53] Calí M., Oliveri S.M., Sequenzia G., Trovato F., Geometric and multibody modeling of rider-motorcycle system, 20th European Modeling and Simulation Symposium, EMSS 2008, 780-787, (2008). Abstract

Abstract: In this study, a methodology based on co-simulation was developed for the multibody parametric modelling of a motorcycle with an anthropomorphic model of the rider. This co-simulation uses two different software programs, integrated to ensure a complete exchange of information between them in real time. The paper reports the effects induced by the movement of the rider's body on the dynamics and performance of a motorcycle. The legs of an anthropomorphic model were used as kinematics to control transverse movements of the motorcycle. The control system inputs are the geometric characteristics of the road (length, width and radius of curvature) and the speed of the vehicle along the track. For the dynamic behaviour of the motorcycle, the only channels currently operated by the control system are steering angle and engine torque, which are determined in accordance with the input parameters.

Keywords: Control | Dynamic | Motorcycle | Multibody | Rider

[54] Calì M., Fatuzzo G., Oliveri S.M., Sequenzia G., Dynamical modeling and design optimization of a cockroach-inspired hexapod, Conference Proceedings of the Society for Experimental Mechanics Series, (2007). Abstract

Abstract: The main purpose of the present study was to optimize a prototype hexapod robot, called Gregor I, through reverse engineering techniques. The robot is based on experimental observations of the cockroach with regard to mechanical design and the locomotion control strategy. This paper reports on the design phase of a hexapod robot, where the basic geometry of the system is defined through solid modeling and improved through kinematic and dynamic studies, using multi-body software. The dynamic simulation environment made it possible to study the performance of the system under different working conditions. Guidelines for an optimization process of the hexapod structure were drawn from these analyzes, aimed at the improvement of specific characteristics: speed, payload and climbing capabilities. Finally, the robot model and the robot prototype were compared.

[55] Calì M., Oliveri S.M., Sequenzia G., Geometric modeling and modal stress formulation for flexible multi-body dynamic analysis of crankshaft, Conference Proceedings of the Society for Experimental Mechanics Series, (2007). Abstract

Abstract: Defining a procedure for the characterization of the crankshaft and entire engine unit, based on CAD-FEM multi-body methodology, would provide an analysis tool which avoids the simplified hypotheses usually accepted when designing these components. The methodology is based on the Craig-Bampton method, i.e. on the theory of component mode synthesis. According to the Craig-Bampton theory, the deformation of a flexible crankshaft interfacing with the rest of the engine is obtained through static and normal modes, considering the discretized model with a large number of degrees of freedom and using modal truncation. It is based on the separation of interface and internal d.o.f. Using modal stress analysis has the advantage of reducing the d.o.f. of the FEA model. The multi-body model includes the elasticity of the camshaft and the reduced inertia of the gearbox and timing system. Comparing simulations performed at different engine speeds, the crankshaft evidenced the angular oscillations of generic sections of the axis and shaft, without separating the bending and torsional d.o.f. At higher engine speeds, the vibrational response showed how the harmonics with greater amplitude correspond to the crankshaft's first natural modes and are excited by some harmonics present in the engine moment.