Boccaccio Antonio

Professore Associato


Politecnico di Bari
antonio.boccaccio@poliba.it

Sito istituzionale
SCOPUS ID: 23471899300
Orcid: 0000-0002-9623-7189



Pubblicazioni scientifiche

[1] Rodríguez-Montaño Ó.L., Vaiani L., Boccaccio A., Uva A.E., Muzio L.L., Spirito F., Dioguardi M., Santacroce L., Di Cosola M., Cantore S., Ballini A., Optimization of Cobalt-Chromium (Co-Cr) Scaffolds for Bone Tissue Engineering in Endocrine, Metabolic and Immune Disorders, Endocrine, Metabolic and Immune Disorders - Drug Targets, 24(4), 430-440, (2024). Abstract
X

Abstract: Approximately 50% of the adult global population is projected to suffer from some form of metabolic disease by 2050, including metabolic syndrome and diabetes mellitus. At the same time, this trend indicates a potential increase in the number of patients who will be in need of implant-supported reconstructions of specific bone regions subjected to inflammatory states. Moreover, physiological conditions associated with dysmetabolic subjects have been suggested to contribute to the severity of bone loss after bone implant insertion. However, there is a perspective evidence strengthening the hypothesis that custom-fabricated bioengineered scaffolds may produce favorable bone healing effects in case of altered endocrine or metabolic conditions. This perspective review aims to share a comprehensive knowledge of the mechanisms implicated in bone resorption and remodelling processes, which have driven researchers to develop metallic implants as the cobalt-chromium (Co-Cr) bioscaffolds, presenting optimized geometries that interact in an effective way with the osteogenetic precursor cells, especially in the cases of perturbed endocrine or metabolic conditions.

Keywords: 3D-printed scaffolds | cobalt-chromium (Co-Cr) bioscaffolds | customized medicine | endocrine metabolic and immune disorders | regenerative medicine | tissue engineering | translational medicine

[2] Vaiani L., Uva A.E., Fiorentino M., Boccaccio A., Modelling and Simulation of Conformal Biomimetic Scaffolds for Bone Tissue Engineering, Lecture Notes in Mechanical Engineering, 471-478, (2024). Abstract
X

Abstract: In this work, a procedure for modelling and simulating conformal biomimetic scaffolds for bone tissue engineering is presented. Starting from a three-dimensional biomedical model of a real human mandible presenting a severe damage, a conformal shape was modelled and filled with an irregular beam network mimicking human trabecular bone. The material considered for the realization of the scaffold was hydroxyapatite derived from fish industry by-products, a material that is highly biocompatible to human bone. Several simulations were conducted on a beam-based wireframe model by varying the radius of the trabeculae, until reaching a stiffness of the scaffold equal to that of human bone. This represents a good design practice to avoid the stress shielding effect on growing bone tissue and functionality losses during bone regeneration. The resulting porosity and the average pore size, which are fundamental properties to ensure a proper vascularization of the growing tissue, were measured and compared to literature data, showing an acceptable agreement. The proposed beam-based approach for modelling and simulating conformal irregular scaffolds appeared as an interactive, fast, and versatile procedure that can be applied in the design stage of conformal biomimetic scaffolds for bone tissue regeneration.

Keywords: Bone Tissue Engineering | CAD Modelling | Mechanical Simulation

[3] Santoro L., Lamberti L., Vaiani L., Uva A.E., Boccaccio A., Guidelines for Finite Element Modeling of Cell Adhesion Process, Lecture Notes in Mechanical Engineering, 163-175, (2024). Abstract
X

Abstract: Cell adhesion is a phenomenon characterizing cell-environment interactions and affects cellular behavior. Cell-substrate adhesion is ensured by focal adhesions (FAs), which are multilayer protein complexes. External mechanical stimulus perceived by FAs is rapidly transmitted first to cytoskeleton load-bearing structures and finally to the nucleus thanks to an interlinked cellular architecture, thus inducing transcription mechanisms and changes in cell functionality. Prestress of cytoskeletal filaments allows mechanical information to be transferred along these stiffer transportation channels with respect to neighboring cell regions, thus avoiding the energy dissipation typical of soft matter. Peculiar items concerning adhesion mechanisms, i.e., stiffness inhomogeneity in cell architecture, and auto-supporting tension-based cell structure, can be effectively handled thanks to modeling strategies provided by finite element method (FEM), which represents a valid tool for simulating cell adhesion. With the aim of replicating experimental results and predicting cell behavior, useful guidelines for simulating cellular adhesion will be outlined in the proposed work.

Keywords: Cell Adhesion | Finite Element Method | Mechanotransduction

[4] Vaiani L., Uva A.E., Boccaccio A., Analysis of the Tensioning Field Induced by Stress Fibers in Nanoindented Stem Cells Adhered to a Flat Substrate, Lecture Notes in Mechanical Engineering, 512-519, (2023). Abstract
X

Abstract: The study of predictive models describing the biological processes relating extra-cellular mechanical stimuli to structural responses of living cells, or even a differentiation, as in the case of mesenchymal stem cells (MSCs), is a relevant aspect in mechanobiology. A preliminary phase for these studies is the assessment of the mechanical behavior of whole living cells or their subcellular components, often performed by means of Atomic Force Microscopy (AFM). In this study we developed a numerical optimization framework aiming at matching the computed results obtained from a sequence of FEM simulations to an experimental AFM report curve associated to a MSC under investigation, in order to extract the elastic parameters of subcellular components and to assess how the mechanical response changes if the stress fibers network present in the interior of the cell is activated or not. By means of the proposed study, we extracted a set of Young’s moduli for the main subcellular components, which resulted comparable to the values computed by means of the Hertzian contact theory, and was also in good agreement with the related literature. By neglecting the effect of the tensioning pre-stress field induced by the stress fibers network, an underestimation of the Young’s moduli of subcellular components, up to a 15% in magnitude, was obtained.

Keywords: Finite element method | Mechanical simulation | Mechanobiology | Stem cells | Stress fibers

[5] Contuzzi N., Casalino G., Boccaccio A., Ballini A., Charitos I.A., Bottalico L., Santacroce L., Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms, Journal of Functional Biomaterials, 14(1), (2023). Abstract
X

Abstract: During the last decades, metal-based biomaterials have been extensively explored to be used as biocompatible metals for biomedical applications, owing to their superior mechanical properties and corrosion resistance. Consequently, for long-term implanted medical devices, to assure the biomaterials’ reliability, functionality, and biocompatibility, studying the various bio-tribological damage mechanisms to obtain the optimum properties is one of the most important goals. In this review, we consider the most important metal-based biomaterials such as stainless steel, alloys of titanium (Ti), cobalt-chromium (Co-Cr), and Nichel-Titatium (Ni-Ti), as well Magnesium (Mg) alloys and with Tantalum (Ta), emphasizing their characteristics, clinical applications, and deterioration over time. The influence of metal elements on biological safety, including significant effects of metal-based biomaterials in dentistry were discussed, considering the perspectives of surface, mechanical properties, corrosion behaviors, including interactions, bio-mechanisms with tissues, and oral environments. In addition, the role of the oral microbiota was explored due to its role in this erosion condition, in order to further understand the mechanism of metal-based biomaterials implanted on the microflora balance of aerobic and anaerobic bacteria in an oral environment.

Keywords: biochemistry | biomedical applications | biotribology | immunity | metal-based biomaterials | microbiology | oral implants | oral microbiota | toxicology

[6] Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A., Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes, Journal of Functional Biomaterials, 14(3), (2023). Abstract
X

Abstract: A growing interest in creating advanced biomaterials with specific physical and chemical properties is currently being observed. These high-standard materials must be capable to integrate into biological environments such as the oral cavity or other anatomical regions in the human body. Given these requirements, ceramic biomaterials offer a feasible solution in terms of mechanical strength, biological functionality, and biocompatibility. In this review, the fundamental physical, chemical, and mechanical properties of the main ceramic biomaterials and ceramic nanocomposites are drawn, along with some primary related applications in biomedical fields, such as orthopedics, dentistry, and regenerative medicine. Furthermore, an in-depth focus on bone-tissue engineering and biomimetic ceramic scaffold design and fabrication is presented.

Keywords: bioceramics | biomaterials | bone tissue engineering | dentistry

[7] Ballini A., Di Stasio D., Boccaccio A., Contaldo M., New Trends in Biosciences II, Applied Sciences (Switzerland), 13(8), (2023). Abstract
X

Abstract: Editorial - No abstract available

[8] Vaiani L., Uva A.E., Boccaccio A., Structural and topological design of conformal bilayered scaffolds for bone tissue engineering, Thin-Walled Structures, 192, (2023). Abstract
X

Abstract: A fundamental outcome of bone tissue engineering is the regeneration of bone defects presenting large dimensions. A promising solution in biomedical practice is the implantation of biomimetic scaffolds, i.e. porous structures mimicking the natural shapes of healthy bone tissues, which are colonized by mesenchymal stem cells and that support the growth of the regenerating tissues, until the complete healing process is realized. This work presented a workflow for the geometrical modeling and the mechanical design of beam-based, bilayered, and conformal scaffolds, mimicking the human cortico-cancellous bone structure for filling a large dimension defect in the mandibular bone of an injured patient. An isotropic Voronoi topology built on a refined point set generated by a high-quality meshing algorithm was adopted for lattice generation, which led to an open-cell architecture characterized by full connectivity and uniform cell size. Such geometrical and structural features represent crucially important requirements for maximizing the osteointegration and the vascularization of the implanted scaffold. An irregular scaffold was modelled, including a cortical and a sponge layer. The beam radii of both layers were determined by matching the elastic properties of the corresponding bone tissues, thus minimizing the stress shielding effects. Interestingly, several scaffold properties deriving from the proposed procedure, such as the porosity and the pore size, were in good agreement with those reported in the literature.

Keywords: Biomimetic scaffolds | Bone tissue engineering | CAD modeling | Lattice structures | Mechanical simulation

[9] Boccaccio A., Lamberti L., Santoro L., Trentadue B., Mechanical Characterization of Soft Membranes with One-Shot Projection Moiré and Metaheuristic Optimization, Applied Sciences (Switzerland), 13(13), (2023). Abstract
X

Abstract: Mechanical characterization of soft materials is a complicated inverse problem that includes nonlinear constitutive behavior and large deformations. A further complication is introduced by the structural inhomogeneity of tested specimens (for example, caused by thickness variations). Optical methods are very useful in mechanical characterization of soft matter, as they provide accurate full-field information on displacements, strains and stresses regardless of the magnitude and/or gradients of those quantities. In view of this, the present study describes a novel hybrid framework for mechanical characterization of soft membranes, combining (i) inflation tests and preliminary in-plane equi-biaxial tests, (ii) a one-shot projection moiré optical setup with two symmetric projectors that project cross-gratings onto the inflated membrane, (iii) a mathematical model to extract 3D displacement information from moiré measurements, and (iv) metaheuristic optimization hybridizing harmony search and JAYA algorithms. The use of cross-gratings allows us to determine the surface curvature and precisely reconstruct the shape of the deformed object. Enriching metaheuristic optimization with gradient information and elitist strategies significantly reduces the computational cost of the identification process. The feasibility of the proposed approach wassuccessfully tested on a 100 mm diameter natural rubber membrane that had some degree of anisotropy in mechanical response because of its inhomogeneous thickness distribution. Remarkably, up to 324 hyperelastic constants and thickness parameters can be precisely identified by the proposed framework, reducing computational effort from 15% to 70% with respect to other inverse methods.

Keywords: materials characterization | metaheuristic optimization | projection moiré | soft matter

[10] Gattullo M., Laviola E., Boccaccio A., Evangelista A., Fiorentino M., Manghisi V.M., Uva A.E., Design of a Mixed Reality Application for STEM Distance Education Laboratories, Computers, 11(4), (2022). Abstract
X

Abstract: In this work, we propose a Mixed Reality (MR) application to support laboratory lectures in STEM distance education. It was designed following a methodology extendable to diverse STEM laboratory lectures. We formulated this methodology considering the main issues found in the literature that limit MR’s use in education. Thus, the main design features of the resulting MR application are students’ and teachers’ involvement, use of not distracting graphics, integration of traditional didactic material, and easy scalability to new learning activities. In this work, we present how we applied the design methodology and used the framework for the case study of an engineering course to support students in understanding drawings of complex machines without being physically in the laboratory. We finally evaluated the usability and cognitive load of the implemented MR application through two user studies, involving, respectively, 48 and 36 students. The results reveal that the usability of our application is “excellent” (mean SUS score 84.7), and it is not influenced by familiarity with Mixed Reality and distance education tools. Furthermore, the cognitive load is medium (mean NASA TLX score below 29) for all four learning tasks that students can accomplish through the MR application.

Keywords: augmented and virtual reality | distance education and online learning | improving classroom teaching | mixed reality | mobile learning

[11] Manghisi V.M., Evangelista A., Boccaccio A., Gattullo M., Fiorentino M., Semisa D., Latorre V., Uva A.E., Cinematic Virtual Reality as a Rehabilitative Tool in Subjects Affected by Schizophrenia, Lecture Notes in Mechanical Engineering, 149-156, (2022). Abstract
X

Abstract: Although Virtual Reality Social Skills Training has proven its effectiveness in treating psychiatric disorders, this VR application field is still under-researched for two main reasons. The first one is the unavailability of low-cost VR technologies with sufficient computational capacity needed to render realistic Virtual Environments. The second one consists of the need for specialized VR application developers, usually far from the mental health research field. The recent diffusion of low-cost stereoscopic viewers and the introduction of easy and fast VR content authoring systems, such as Cinematic Virtual Reality (CVR), allow overcoming these limitations. CVR makes it possible to capture real scenes through 360 cameras, augment them with additional virtual objects, and finally immerse the user in these synthetic but highly immersive environments. We present the design and the features of the Entellect360 prototype -an innovative tool supporting the rehabilitation process of subjects affected by schizophrenia. It exploits CVR technology to create Virtual Environments aimed at the rehabilitation of psychiatric patients. The Entellect360 features allow for rehabilitation sessions and patient-performance data-collection even under conditions of social distancing. We also explain the experimental protocol and the validation procedure the prototype will undergo to assess its effectiveness.

Keywords: 360-degree virtual reality | Cognitive rehabilitation | Human-computer interaction | Mental health | Social skills training

[12] Laviola E., Gattullo M., Boccaccio A., Evangelista A., Fiorentino M., Manghisi V.M., Uva A.E., Mixed Reality in STEM Didactics: Case Study of Assembly Drawings of Complex Machines, Lecture Notes in Mechanical Engineering, 157-164, (2022). Abstract
X

Abstract: Mixed Reality (MR) could help students in the understanding of complex concepts as well as increase their motivation in the learning process. In this work, our aim is to propose a MR application for the support of engineering students in the understanding of assembly drawings of complex machines. We presented the application of our design methodology for this case study. Then, based on the results of a user study with a sample of students, we tried to improve the usability and the user experience of the MR application, proposing an updated version. The usability of the revised application was in the range “good-excellent” (mean SUS score 77.0). We also presented the lessons learned in this case study, that can be a starting point for a renewal of consolidated didactic processes aiming at future application of MR in other STEM courses.

Keywords: Augmented and virtual reality | Distance education and online learning | Improving classroom teaching | Mixed Reality | Mobile learning

[13] Vaiani L., Fiorentino M., Gattullo M., Manghisi V.M., Uva A.E., Boccaccio A., A Coarse-Grained Lattice Spring Model to Characterize Nanoindented Stem Cells, Lecture Notes in Mechanical Engineering, 623-629, (2022). Abstract
X

Abstract: In this work, a Coarse-Grained Lattice Spring Model to characterize the mechanical behavior of human mesenchymal stem cells subjected to nanoindentation measurements is presented. The model simulated the action of adhesive structures acting on cells, necessary for attaching them to a substrate, and a nanoindentation process, performed by means of an atomic force microscope with a spherical tip. Cells were hypothesized to behave as elastic materials and the model included several subcellular components such as cell cortex and cytoskeleton. The lattice spring model was integrated within an optimization algorithm that iteratively compared the force-indentation curve numerically predicted to the data experimentally obtained, until a best fit condition was reached. The computed mechanical properties of the cell were compared to those obtained via the Hertz contact theory and finite element modelling, showing a good agreement. The proposed lattice spring model appears as a promising tool that can be used, with a very low computational cost, to characterize cell materials and other biological materials.

Keywords: Cell mechanical properties | Lattice spring models | Nanoindentation | Stem cells

[14] Gattullo M., Piccininni A., Evangelista A., Guglielmi P., Boccaccio A., Cusanno A., Uva A.E., Palumbo G., A Mixed Reality application to support the design of custom prostheses, Procedia Computer Science, 217, 1018-1027, (2022). Abstract
X

Abstract: The definition of an innovative category of implantable devices, characterized not only by a fully customization but also by improved osteoconductive and functionalized bioactive surfaces, needs to be supported by a systematic approach. In the present work, a new human-machine interface based on the Mixed Reality (MR) is proposed and focused on the implantation of a fully customized prosthesis. By means of an informal and exploratory focus group (i.e., without using a structured questionnaire), the limitations belonging to the current procedure were highlighted and a first list of user needs was subsequently defined. The MR interface was then considered to be the most suitable solution to match the gathered requirements. However, the doctors proposed also to develop a desktop interface for a finer and easier manipulation of 3D models. The proposed MR application offers several advantages from the possibility to display 3D anatomical structures and 3D models of custom prostheses in an immersive environment to the optimized communication and data exchange among the players (medical staff, doctors and engineers). A mock-up of the MR applications is presented in this work to show the results of the design stage, before the deployment of the application.

Keywords: Collaborative Network | Fully Custom Implants | Immersive Environment | Mixed Reality

[15] Ballini A., Di Stasio D., Boccaccio A., Contaldo M., New trends in biosciences, Applied Sciences (Switzerland), 11(20), (2021).
[16] Boccaccio A., Design of materials for bone tissue scaffolds, Materials, 14(20), (2021). Abstract
X

Abstract: The strong impulse recently experienced by the manufacturing technologies as well as the development of innovative biocompatible materials has allowed the fabrication of high-performing scaffolds for bone tissue engineering. The design process of materials for bone tissue scaffolds represents, nowadays, an issue of crucial importance and the object of study of many researchers throughout the world. A number of studies have been conducted, aimed at identifying the optimal material, geometry, and surface that the scaffold must possess to stimulate the formation of the largest amounts of bone in the shortest time possible. This book presents a collection of 10 research articles and 2 review papers describing numerical and experimental design techniques definitively aimed at improving the scaffold performance, shortening the healing time, and increasing the success rate of the scaffold implantation process.

Keywords: Bone regeneration | Bone tissue engineering | Porous materials

[17] Laera F., Fiorentino M., Evangelista A., Boccaccio A., Manghisi V.M., Gabbard J., Gattullo M., Uva A.E., Foglia M.M., Augmented reality for maritime navigation data visualisation: A systematic review, issues and perspectives, Journal of Navigation, 74(5), 1073-1090, (2021). Abstract
X

Abstract: This study investigates the use of augmented reality technology (AR) in the field of maritime navigation and how researchers and designers have addressed AR data visualisation. The paper presents a systematic review analysing the publication type, the AR device, which information elements are visualised and how, the validation method and technological readiness. Eleven AR maritime solutions identified from scientific papers are studied and discussed in relation to previous navigation tools. It is found that primitive information such as course, compass degrees, boat speed and geographic coordinates continue to be fundamental information to be represented even with AR maritime solutions.

Keywords: augmented reality | data visualisation | human-computer interaction | maritime

[18] Migliorini E., Cavalcanti-Adam E.A., Uva A.E., Fiorentino M., Gattullo M., Manghisi V.M., Vaiani L., Boccaccio A., Nanoindentation of mesenchymal stem cells using atomic force microscopy: Effect of adhesive cell-substrate structures, Nanotechnology, 32(21), (2021). Abstract
X

Abstract: The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.

Keywords: Cell cortex | Cell mechanics | Cytoskeleton | Finite element method | Focal adhesion | Stress fibers

[19] Fiorentino M., Laera F., Evangelista A., Boccaccio A., Manghisi V.M., Gattullo M., Uva A.E., Gabbard J.L., Foglia M.M., Sailing data visualization in augmented reality: Systematic review, issues, and perspectives, Marine Technology Society Journal, 55(2), 64-80, (2021). Abstract
X

Abstract: Today’s sailing visualization instruments struggle to cope with the increasing number of onboard sensors, automation, artificial intelligence, and the high dy-namism of the crew. Current solutions scatter multiple displays all over the boat, both inside and outside, potentially reducing usability and increasing costs. This work presents a systematic review of augmented reality (AR) as an integral solution for sailing data visualization, which revealed four scientific papers and eight commercial products. We analyzed the publication type, the AR hardware, what and how information is presented using AR, the validation method (if present), and the technological readiness. We defined the technical requirements needed for the AR device for sailing and distinguished a first generation of commercial solutions based on head-up displays from a second one based on proper augmentation with stereo head-mounted displays. The displayed information elements are limited in number and are commonly 2-D graphics (e.g., text and symbols) with a screen-relative frame of reference (as opposed to body-or world-relative). The most visu-alized elements are heading (10) followed by wind direction (8), boat speed (7) compass (7), and wind speed (7). We also found that most of the solutions lack critical evaluation. We conclude that AR has the potential to integrate sailing data from different systems and to improve accessibility, situation awareness, and safety for a large group of users. However, the main limitations are the lack of AR head-mounted displays suitable or adaptable for sailing conditions, an extensive exploration of 3-D interface elements, and an adequate number of usability studies in the scientific literature.

Keywords: Augmented reality | Data visualization | Human-computer interaction | Nautical instruments | Sailing

[20] Vaiani L., Migliorini E., Cavalcanti-Adam E.A., Uva A.E., Fiorentino M., Gattullo M., Manghisi V.M., Boccaccio A., Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements, Materials Science and Engineering C, 121, (2021). Abstract
X

Abstract: The knowledge of the mechanical properties is the starting point to study the mechanobiology of mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common technique for measuring these mechanical properties. In this paper we present an alternative approach for extracting common mechanical parameters, such as the Young's modulus of cell components, starting from AFM nanoindentation measurements conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc optimization algorithm perturbed the local stiffness values of the springs, subdivided in several functional regions, until the computed force-indentation curve replicated the experimental one. After this curve matching, the extraction of global Young's moduli was performed for different stem cell samples. The algorithm was capable to distinguish the material properties of different subcellular components such as the cell cortex and the cytoskeleton. The numerical results predicted with the elastic network model were then compared to those obtained from hertzian contact theory and Finite Element Method (FEM) for the same case studies, showing an optimal agreement and a highly reduced computational cost. The proposed simulation flow seems to be an accurate, fast and stable method for understanding the mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the elastic network modelling allows shortening the computational times to approximately 33% of the time required by a traditional FEM simulation performed using elements with size comparable to that of springs.

Keywords: Atomic force microscopy | Cell material characterization | Elastic network model | Meshless methods

[21] Boccaccio A., Skarbez R., Message from the ISMAR 2021 Workshop and Tutorial Chairs, Proceedings - 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct, ISMAR-Adjunct 2021, xiii, (2021).
[22] Laera F., Foglia M.M., Evangelista A., Boccaccio A., Gattullo M., Manghisi V.M., Gabbard J.L., Uva A.E., Fiorentino M., Towards Sailing supported by Augmented Reality: Motivation, Methodology and Perspectives, Adjunct Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020, 269-274, (2020). Abstract
X

Abstract: Sailing is a multidisciplinary activity that requires years to master. Recently this sustainable sport is becoming even harder due to the increasing number of onboard sensors, automation, artificial intelligence, and the high performances obtainable with modern vessels and sail designs. Augmented Reality technology (AR) has the potential to assist sailors of all ages and experience level and improve confidence, accessibility, situation awareness, and safety. This work presents our ongoing research and methodology for developing AR assisted sailing. We started with the problem definition followed by a state of the art using a systematic review. Secondly, we elicited the main task and variables using an online questionnaire with experts. Third, we extracted the main variables and conceptualized some visual interfaces using 3 different approaches. As final phase, we designed and implemented a user test platform using a VR headset to simulate AR in different marine scenarios. For a real deployment, we witness the lack of available AR devices, so we are developing one specific headset dedicated to this task. We also envision the possible redesign of the entire boat as a consequence of the introduction of AR technology.

Keywords: Augmented Reality | Human Computer Interaction | Nautical | Sailing | Yacht

[23] Manghisi V.M., Fiorentino M., Boccaccio A., Gattullo M., Cascella G.L., Toschi N., Pietroiusti A., Uva A.E., A body tracking-based low-cost solution for monitoring workers’ hygiene best practices during pandemics, Sensors (Switzerland), 20(21), 1-17, (2020). Abstract
X

Abstract: Since its beginning at the end of 2019, the pandemic spread of the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) caused more than one million deaths in only nine months. The threat of emerging and re-emerging infectious diseases exists as an imminent threat to human health. It is essential to implement adequate hygiene best practices to break the contagion chain and enhance society preparedness for such critical scenarios and understand the relevance of each disease transmission route. As the unconscious hand–face contact gesture constitutes a potential pathway of contagion, in this paper, the authors present a prototype system based on low-cost depth sensors able to monitor in real-time the attitude towards such a habit. The system records people’s behavior to enhance their awareness by providing real-time warnings, providing for statistical reports for designing proper hygiene solutions, and better understanding the role of such route of contagion. A preliminary validation study measured an overall accuracy of 91%. A Cohen’s Kappa equal to 0.876 supports rejecting the hypothesis that such accuracy is accidental. Low-cost body tracking technologies can effectively support monitoring compliance with hygiene best practices and training people in real-time. By collecting data and analyzing them with respect to people categories and contagion statistics, it could be possible to understand the importance of this contagion pathway and identify for which people category such a behavioral attitude constitutes a significant risk.

Keywords: Azure kinect | Body tracking | Hygiene best practices | Occupational safety | Pandemics containment | Safety training

[24] Rodríguez-Montaño Ó.L., Cortés-Rodríguez C.J., Uva A.E., Fiorentino M., Gattullo M., Manghisi V.M., Boccaccio A., An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores, Materials, 13(18), (2020). Abstract
X

Abstract: Despite the wide use of scaffolds with spherical pores in the clinical context, no studies are reported in the literature that optimize the micro-architecture dimensions of such scaffolds to maximize the amounts of neo-formed bone. In this study, a mechanobiology-based optimization algorithm was implemented to determine the optimal geometry of scaffolds with spherical pores subjected to both compression and shear loading. We found that these scaffolds are particularly suited to bear shear loads; the amounts of bone predicted to form for this load type are, in fact, larger than those predicted in other scaffold geometries. Knowing the anthropometric characteristics of the patient, one can hypothesize the possible value of load acting on the scaffold that will be implanted and, through the proposed algorithm, determine the optimal dimensions of the scaffold that favor the formation of the largest amounts of bone. The proposed algorithm can guide and support the surgeon in the choice of a "personalized" scaffold that better suits the anthropometric characteristics of the patient, thus allowing to achieve a successful follow-up in the shortest possible time.

Keywords: Bone tissue engineering | Computational mechanobiology | Geometry optimization | Parametric CAD (Computer aided design) model | Python code

[25] Evangelista A., Ardito L., Boccaccio A., Fiorentino M., Messeni Petruzzelli A., Uva A.E., Unveiling the technological trends of augmented reality: A patent analysis, Computers in Industry, 118, (2020). Abstract
X

Abstract: This paper investigates the Augmented Reality (AR) technology with a novel approach based on patent research. We searched the USPTO for AR-related granted patents in the period 1993–2018, we selected and manually browse a total of 2,373, we classified them in five key technological classes i.e., display device, tracking, user interaction, application, and system, and we finally analyzed the results. The main contribution of this paper is the investigation of the technological trends, with outcomes that can be useful for researchers and developers for technical steering, but also for policymakers, managers and entrepreneurs for technology scouting and forecasting. Our study found that AR technological development has especially increased in the last decade. In particular, we evidenced a remarkable steady of 82 % annual growth rate of the number of granted patents after 2012. From geographical distribution, we found that North America is the leader (68 %); Asia (18 %) and Europe (13 %) are lagging behind despite dedicated Industry 4.0 policies actuated by the governments. Another nontrivial result is the incoherency between the owners of a high quantity of patents and those highly impacting. In fact, only Microsoft Corporation and Amazon Technologies are at the same time in the top 10 of the most patent-intensive organizations and the top 10 of highly impacting organizations. Moreover, the majority of the patents are owned by companies, albeit some of the highly impacting ones come from universities or research centers. These findings provide theoretical, managerial, and policy implications for future research activities in the AR domain.

Keywords: Application | AR systems | Augmented reality | Display device | Geographical distribution | Holograms | Human-machine interaction | Immersive technologies | Industry 4.0 | Interactive technologies | Patent analysis | Presence | Review | Technological innovation | Technological trend | Technology forecasting | Technology scouting | Tracking | User interaction | Visual overlay

[26] Gattullo M., Evangelista A., Manghisi V.M., Uva A.E., Fiorentino M., Boccaccio A., Ruta M., Gabbard J.L., Towards next generation technical documentation in augmented reality using a context-aware information manager, Applied Sciences (Switzerland), 10(3), (2020). Abstract
X

Abstract: Technical documentation is evolving from static contents presented on paper or via digital publishing to real-time on-demand contents displayed via virtual and augmented reality (AR) devices. However, how best to provide personalized and context-relevant presentation of technical information is still an open field of research. In particular, the systems described in the literature can manage a limited number of modalities to convey technical information, and do not consider the 'people' factor. Then, in this work, we present a Context-Aware Technical Information Management (CATIM) system, that dynamically manages (1) what information as well as (2) how information is presented in an augmented reality interface. The system was successfully implemented, and we made a first evaluation in the real industrial scenario of the maintenance of a hydraulic valve. We also measured the time performance of the system, and results revealed that CATIM performs fast enough to support interactive AR.

Keywords: Augmented reality | Context-aware | Human-centered design | Human-computer interaction | Industrial | Information manager | Maintenance | Technical documentation

[27] Percoco G., Uva A.E., Fiorentino M., Gattullo M., Manghisi V.M., Boccaccio A., Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study, Materials, 13(3), (2020). Abstract
X

Abstract: In spite of the rather large use of the fused deposition modeling (FDM) technique for the fabrication of scaffolds, no studies are reported in the literature that optimize the geometry of such scaffold types based on mechanobiological criteria. We implemented a mechanobiology-based optimization algorithm to determine the optimal distance between the strands in cylindrical scaffolds subjected to compression. The optimized scaffolds were then 3D printed with the FDM technique and successively measured. We found that the difference between the optimized distances and the average measured ones never exceeded 8.27% of the optimized distance. However, we found that large fabrication errors are made on the filament diameter when the filament diameter to be realized differs significantly with respect to the diameter of the nozzle utilized for the extrusion. This feasibility study demonstrated that the FDM technique is suitable to build accurate scaffold samples only in the cases where the strand diameter is close to the nozzle diameter. Conversely, when a large difference exists, large fabrication errors can be committed on the diameter of the filaments. In general, the scaffolds realized with the FDM technique were predicted to stimulate the formation of amounts of bone smaller than those that can be obtained with other regular beam-based scaffolds.

Keywords: Biomaterials | Geometry optimization | Mechanobiology | Scaffold design | Tissue engineering

[28] Manghisi V.M., Uva A.E., Fiorentino M., Gattullo M., Boccaccio A., Evangelista A., Automatic ergonomic postural risk monitoring on the factory shopfloor -The Ergosentinel tool, Procedia Manufacturing, 42, 97-103, (2020). Abstract
X

Abstract: The enabling technologies of the Industry 4.0 program can support the smart factory of the future to face the challenges related to their sustainable growth. In particular, given the progressive ageing of the population, it is mandatory to develop systems able to preserve operators' wellbeing and to prevent the incidence of work-related musculoskeletal disorders. By exploiting a recently introduced low-cost sensor we developed and validated a reliable prototype for automatic assessment of ergonomic postural risk in the factory shopfloor. Encouraged by the results of the validation process, we enhanced the prototype functionalities. The tool will serve both as a monitoring system for the evaluation of postural risk and a training system for increasing operators' awareness. In this paper, we describe the design of the prototype and the enhanced functionalities of the final version, - the ErgoSentinel.

Keywords: Ergonomics | I4.0 | Kinect® V2 | Postural risk assessment | RULA | Sustainable work

[29] Boccaccio A., Fiorentino M., Manghisi V.M., Monno G., Uva A.E., Effect of Cell Shape on Nanoindentation Measurements, Lecture Notes in Mechanical Engineering, 37-44, (2020). Abstract
X

Abstract: The aim of this study is to understand if the shape of a cell can affect the characterization process of the mechanical properties via nanoindentation measurements. The characterization of the cell material by atomic force microscopy, in fact, traditionally implements the Hertz contact theory that is based on hypotheses not satisfied in the contact Atomic Force Microscope tip/cell and that do not take into account the actual cell morphology. In previous experimental studies, the mechanical properties of colorectal cancer cells differently shaped (rounded or elongated cells) and sized were determined via nanoindentation measurements. Implementing the Hertz theory, the authors found that differences in mechanical properties exist between the different cell lines with different shape. At this point, the question that can be raised is the following. Is it possible to state that this difference depends on the differences intrinsically existing between the mechanical properties of the investigated cells? Or, this difference can be justified with the difference in cells shape? In other words, the differences seen with the Hertz theory can depend on the fact that the cell shape was not taken into account. To respond to this question, the nanoindentation process of the different colorectal cancer cells was simulated via the finite element method. The finite element models reproducing the cells morphology were integrated into a numerical optimization algorithm that cyclically perturbs the cell mechanical properties until the difference between the force-indentation curve retrieved numerically and that obtained experimentally becomes smaller than an a priori fixed ε value. Once this occurs, the optimization algorithm stops and gives in output the optimal cell material properties. Interestingly, we found that the mechanical properties obtained via the Hertz contact theory are significantly different with respect to those computed with the proposed approach. Furthermore, we found that the material properties of the rounded cells are intrinsically different with respect to those of the elongated ones. The proposed approach provides new insights on the cell mechanobiology and on the effect of cell shape on the specific tasks in cancer growth and invasion.

Keywords: Cell material characterization | Cell modelling | Cell shape

[30] Rodríguez-Montaño L., Cortés-Rodríguez C.J., Uva A.E., Fiorentino M., Evangelista A., Gattullo M., Manghisi V.M., Boccaccio A., Geometry optimization of scaffolds for bone tissue engineering, Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, 277-301, (2020). Abstract
X

Abstract: A number of studies have recently demonstrated that the geometry of scaffolds for bone tissue engineering significantly affects the tissue differentiation process and the rate of bone tissue regeneration. These findings and the possibility of fabricating any kind of sophisticated geometries by additive manufacturing techniques led many researchers throughout the world to investigate strategies for the design of scaffolds and for the optimization of their geometry. In this chapter, after revising the numerical optimization algorithms recently implemented to determine the best scaffold geometry we will investigate, in particular, those that are mechanobiology-driven. These algorithms perturb the scaffold microarchitecture until the optimal scaffold geometry, i.e., the geometry that allows maximizing the amounts of bone forming within the scaffold pores, is computed. Different applications of these algorithms to different regular and irregular scaffold geometries will be shown.

Keywords: Beam-based scaffold | Irregular scaffold | Mechanobiology | Mechanoregulation algorithm | Regular scaffold

[31] Brunelli R., De Spirito M., Giancotti A., Palmieri V., Parasassi T., Di Mascio D., Flammini G., D'Ambrosio V., Monti M., Boccaccio A., Pappalettere C., Ficarella E., Papi M., Lamberti L., The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression, Journal of the Mechanical Behavior of Biomedical Materials, 100, (2019). Abstract
X

Abstract: The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions.

[32] Rodríguez-Montaño Ó.L., Cortés-Rodríguez C.J., Naddeo F., Uva A.E., Fiorentino M., Naddeo A., Cappetti N., Gattullo M., Monno G., Boccaccio A., Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria, ACS Biomaterials Science and Engineering, 5(10), 5392-5411, (2019). Abstract
X

Abstract: By combining load adaptive algorithms with mechanobiological algorithms, a computational framework was developed to design and optimize the microarchitecture of irregular load adapted scaffolds for bone tissue engineering. Skeletonized cancellous bone-inspired lattice structures were built including linear fibers oriented along the internal flux of forces induced by the hypothesized boundary conditions. These structures were then converted into solid finite element models, which were optimized with mechanobiology-based optimization algorithms. The design variable was the diameter of the beams included in the scaffold, while the design objective was the maximization of the fraction of the scaffold volume predicted to be occupied by neo-formed bony tissue. The performance of the designed irregular scaffolds, intended as the capability to favor the formation of bone, was compared with that of the regular ones based on different unit cell geometries. Three different boundary and loading conditions were hypothesized, and for all of them, it was found that the irregular load adapted scaffolds perform better than the regular ones. Interestingly, the numerical predictions of the proposed framework are consistent with the results of experimental studies reported in the literature. The proposed framework appears to be a powerful tool that can be utilized to design high-performance irregular load adapted scaffolds capable of bearing complex load distributions.

Keywords: finite element method | irregular and regular scaffolds | load adaptive algorithms | mechanobiological algorithms | robustness of optimized structures | structural optimization algorithms

[33] Uva A.E., Fiorentino M., Manghisi V.M., Boccaccio A., Debernardis S., Gattullo M., Monno G., A User-Centered Framework for Designing Midair Gesture Interfaces, IEEE Transactions on Human-Machine Systems, 49(5), 421-429, (2019). Abstract
X

Abstract: Due to the recent advances in technologies for gesture recognition, midair gestures can be considered the interface of the future in a large number of applications. However, designing effective interfaces with midair gestures is not an easy task because the design is application dependent and it must fulfill many requirements at the same time. Despite the availability of general guidelines in the literature, clear and well-established procedures for the optimal design of midair gesture-based interfaces are, to date, not available and remain an open issue. The main contribution of this paper is a user-centered modular framework, which integrates existing and novel methods. It supports the designer considering multiple aspects including ergonomics, memorability, and specific user requirements tailored to the application scenario. The framework involves three design steps and a final validation step, also supported by dedicated software. We tested with success the proposed framework in an industrial case study, where technicians must easily access technical information by browsing digital manuals during maintenance operations.

Keywords: Consumed endurance (CE) | ergonomics | gesture vocabulary | midair gesture interface | user-centered elicitation approach

[34] Trotta G.F., Pellicciari R., Boccaccio A., Brunetti A., Cascarano G.D., Manghisi V.M., Fiorentino M., Uva A.E., Defazio G., Bevilacqua V., A neural network-based software to recognise blepharospasm symptoms and to measure eye closure time, Computers in Biology and Medicine, 112, (2019). Abstract
X

Abstract: Blepharospasm (BSP) is an adult-onset focal dystonia with phenomenologically heterogeneous effects, including, but not limited to, blinks, brief or prolonged spasms, and a narrowing or closure of the eyelids. In spite of the clear and well-known symptomatology, objectively rating the severity of this dystonia is a rather complex task since BSP symptoms are so subtle and hardly perceptible that even expert neurologists can rate the gravity of the pathology differently in the same patients. Software tools have been developed to help clinicians in the rating procedure. Currently, a computerised video-based system is available that is capable of objectively determining the eye closure time, however, it cannot distinguish the typical symptoms of the pathology. In this study, we attempt to take a step forward by proposing a neural network-based software able not only to measure the eye closure, time but also to recognise and count the typical blepharospasm symptoms. The software, after detecting the state of the eyes (open or closed), the movement of specific facial landmarks, and properly implementing artificial neural networks with an optimised topology, can recognise blinking, and brief and prolonged spasms. Comparing the software predictions with the observations of an expert neurologist allowed assessment of the sensitivity and specificity of the proposed software. The levels of sensitivity were high for recognising brief and prolonged spasms but were lower in the case of blinks. The proposed software is an automatic tool capable of making objective ‘measurements’ of blepharospasm symptoms.

Keywords: Blepharospasm | Blepharospasm rating scale | Eye closure time | Focal dystonia | Neural network topology optimisation

[35] Gattullo M., Dalena V., Evangelista A., Uva A.E., Fiorentino M., Boccaccio A., Ruta M., Gabbard J.L., A context-aware technical information manager for presentation in augmented reality, 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings, 939-940, (2019). Abstract
X

Abstract: Technical information presentation is evolving from static contents presented on paper or via digital publishing to real-time context-aware contents displayed via virtual and augmented reality devices. We present a Context-Aware Technical Information Management system (CATIM), that dynamically manages (1) what information as well as (2) how information is presented in an augmented reality interface. CATIM acquires context data about activity, operator, and environment, and then based on these data, proposes a dynamic augmented reality output tailored to the current context. The system was successfully implemented and preliminarily evaluated in a case study regarding the maintenance of a hydraulic valve.

Keywords: Aware information | Context | Industrial augmented reality | Technical information manager

[36] Gattullo M., Evangelista A., Uva A.E., Fiorentino M., Boccaccio A., Manghisi V.M., Exploiting Augmented Reality to Enhance Piping and Instrumentation Diagrams for Information Retrieval Tasks in Industry 4.0 Maintenance, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11883 LNCS, 170-180, (2019). Abstract
X

Abstract: In this work, we present an Augmented Reality (AR) application for handheld devices that support operators in information retrieval tasks in maintenance procedures in the context of Industry 4.0. Indeed, using AR allows the integration of knowledge-based information, traditionally used by operators and mainly provided in the form of technical drawings, and data available from sensors on the equipment. This approach is suggested by companies, especially Small and Medium-sized Enterprises, that want a gradual introduction of Industry 4.0 technologies within their established practices. We implemented a prototype of the application for the case study of a milling plant. The application augments on a Piping and Instrumentation Diagram (P&ID) of the plant some virtual interactive graphics (hotspots) referenced to specific components drawn. Component data are retrieved, through a user interface, directly from the factory database and displayed on the screen. We evaluated the application through a user study aimed at comparing the AR application with the current practice, based on paper documentation, for an information retrieval task within a maintenance procedure. Results of the study revealed that AR is effective for this task in terms of task time reduction and usability. The AR application was tested both with a tablet and a smartphone, but results revealed that using tablet does not improve user performance in terms of task time, error rate, and usability.

Keywords: Augmented Reality | Industry 4.0 | Information retrieval | Maintenance | User evaluation

[37] Boccaccio A., Cascella G.L., Fiorentino M., Gattullo M., Manghisi V.M., Monno G., Uva A.E., Exploiting augmented reality to display technical information on industry 4.0 P&ID, Lecture Notes in Mechanical Engineering, 282-291, (2019). Abstract
X

Abstract: In this work, we present an Augmented Reality framework for handheld devices that enhance users in the comprehension of plant information traditionally conveyed through printed Piping and Instrumentation Diagrams (P&ID). The proposed framework augments on the P&ID of a plant some virtual interactive graphics (hotspots) referenced to specific components drawn on the P&ID. In this way, it is possible to easily find all the components belonging to the same category (e.g., all the pumps). By tapping, on the tablet screen, on a single hotspot further multimedia information can be displayed: Technical data, 3D CAD model of the component, and 360° images of the plant section. The application is connected to the factory database where all the information associated with the plant components is stored. We used, as a case study, the cleaning section of a milling plant. With the tool presented in this work, technicians will be able to find information updated and in less time, so reducing the intervention time and increasing the accuracy of the operations. Furthermore, the cognitive load associated with the task of understanding the plant is highly reduced through the use of virtual information displayed using Augmented Reality.

Keywords: Augmented Reality | Industrial plant | Industry 4.0 | P&ID | Technical information

[38] Boccaccio A., Fiorentino M., Gattullo M., Manghisi V.M., Monno G., Uva A.E., Geometry modelling of regular scaffolds for bone tissue engineering: A computational mechanobiological approach, Lecture Notes in Mechanical Engineering, 517-526, (2019). Abstract
X

Abstract: Scaffolds are porous biomaterials that serve to replace missing portions of bone. Scaffolds must possess a proper geometry and hence have to be adequately designed to correctly undergo to the load and to favor the differentiation of the mesenchymal stem cells invading it, into osteoblasts. It is commonly known that scaffold geometry affects the quality of the regenerated bone creating within the scaffold pores. Scaffold properly designed trigger favorable values of biophysical stimuli that are responsible for the reactions cascade leading to the bone formation. In this paper an optimization algorithm is proposed that, based on mechano-regulation criteria, identifies the optimal geometry of scaffolds, i.e. the geometry that favors the formation of the largest amounts of bone in the shortest time. In detail, the algorithm, written in the Matlab environment, incorporates parametric finite element models of different scaffold types, a computational mechanobiological model and structural optimization routines. The scaffold geometry is iteratively perturbed by the algorithm until the optimal geometry is computed, i.e. the geometry that triggers the most favorable values of the biophysical stimulus which lead to the formation of mature bone. Mesenchymal stem cells were hypothesized to spread within the fracture domain and uniformly occupy the scaffold pores.

Keywords: Hexahedron unit cell | Mechanobiology | Rhombicuboctahedron unit cell | Unit cell geometry

[39] Rodríguez-Montaño Ó.L., Cortés-Rodríguez C.J., Uva A.E., Fiorentino M., Gattullo M., Monno G., Boccaccio A., Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries, Journal of the Mechanical Behavior of Biomedical Materials, 83, 28-45, (2018). Abstract
X

Abstract: Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region.

Keywords: Beam-based scaffolds | Bone tissue engineering | Diamond | Mechanobiology | Rhombic dodecahedron | Truncated cube | Truncated cuboctahedron | Unit cell

[40] Manghisi V.M., Uva A.E., Fiorentino M., Gattullo M., Boccaccio A., Monno G., Enhancing user engagement through the user centric design of a mid-air gesture-based interface for the navigation of virtual-tours in cultural heritage expositions, Journal of Cultural Heritage, 32, 186-197, (2018). Abstract
X

Abstract: One of the most effective strategies that can be adopted to make successful cultural heritage expositions consists in attracting the visitors’ attention and improving their enjoyment/engagement. A mid-air gesture-based Natural User Interface was designed, through the user-centric approach, for the navigation of virtual tours in cultural heritage exhibitions. In detail, the proposed interface was developed to “visit” Murgia, a karst zone lying within Puglia, very famous for its fortified farms, dolines, sinkholes, and caves. Including an “immersive” gesture-based interface was demonstrated to improve the user's experience thus giving her/him the sensation of “exploring” in a seamless manner the wonderful and rather adventurous sites of Murgia. User tests aimed at comparing the implemented interface with a conventional mouse-controlled one confirmed the capability of the proposed interface to enhance the user engagement/enjoyment and to make “more” natural/real, the virtual environment.

Keywords: Gesture vocabulary design | Natural user interface | User-centric approach | Virtual tour

[41] Boccaccio A., Fiorentino M., Uva A.E., Laghetti L.N., Monno G., Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm, Materials Science and Engineering C, 83, 51-66, (2018). Abstract
X

Abstract: In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region.

Keywords: Computational mechanobiology | Morphology optimization | Rhombicuboctahedron | Scaffold unit cell

[42] Boccaccio A., Uva A.E., Fiorentino M., Bevilacqua V., Pappalettere C., Monno G., A Computational Approach to the Design of Scaffolds for Bone Tissue Engineering, Lecture Notes in Bioengineering, 111-117, (2018). Abstract
X

Abstract: Design of scaffolds for tissue engineering entails multi-disciplinary and multi-scale aspects. Since in vivo analysis of the tissue regeneration process is quite difficult in terms of selecting experimental protocols and requires considerable amount of time, a variety of numerical models have been developed to simulate mechanisms of tissue differentiation. The tremendous enhancement in computing power led researchers to develop more and more sophisticated models mostly based on finite element techniques and mechano-regulation computational models. In this article, we present an algorithm that combines the finite element model of an open-porous scaffold, a numerical optimization routine and a mechanobiological model. This algorithm has been utilized to determine both, the best scaffold geometry and the best load value (to apply on the scaffold) that allow the bone formation to be maximized.

Keywords: Bone tissue scaffold | Computational mechanobiology | Geometry optimization | Scaffold micro-architecture

[43] Cantore S., Crincoli V., Boccaccio A., Uva A.E., Fiorentino M., Monno G., Bollero P., Derla C., Fabiano F., Ballini A., Santacroce L., Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds, Endocrine, Metabolic and Immune Disorders - Drug Targets, 18(5), 466-469, (2018). Abstract
X

Abstract: Background: New sources of stem cells in adult organisms are constantly emerging. Postnatal Mesenchymal Stem Cells (MSCs), are the most promising support to perform an effective regenerative medicine: such cells have the ability to differentiate into several lineages, such as osteoblasts and chondroblasts, providing novel strategies to improve different complex treatments, during bone regeneration. 3D-printed biomaterials can be designed with geometry aimed to induce stem cells to differentiate towards specific lineage. Objective: The interaction between stem cells easy to isolate and engineered 3D-printed scaffolds can translate the tissue bio-engineering into bone regenerative surgery. For those reasons, to better identify the complexity represented by the activities and responses of MSCs requires the advance of new target therapies which are not current in endocrine, metabolic and immune disorders and yet to be developed. Method: This topical review briefly focuses on the new approaches of translational medicine with the use of MSCs and scaffolds engineered with the aid of 3D-printing technology, highlights the osteogenic functions and addresses their applications across the breadth of regenerative medicine. Results: The application of bone constructs consisting of the engineered scaffold and MSCs as well as the aspects related to the optimal scaffold geometry that favours the best MSCs differentiation and the improvement of concepts as “sensing surface” were also discussed. Conclusion: Regenerative surgery is largely growing in the field of translational medicine. The use of new sources of MSCs and the improvement of new concepts of bio-engineered scaffolds will certainly be the next step of customized medicine.

Keywords: 3D-printed scaffolds | Customized medicine | Mesenchymal stem cells | Regenerative medicine | Tissue engineering | Translational medicine

[44] Boccaccio A., Uva A.E., Fiorentino M., Monno G., Ballini A., Desiate A., Optimal load for bone tissue scaffolds with an assigned geometry, International Journal of Medical Sciences, 15(1), 16-22, (2018). Abstract
X

Abstract: Thanks to the recent advances of three-dimensional printing technologies the design and the fabrication of a large variety of scaffold geometries was made possible. The surgeon has the availability of a wide number of scaffold micro-architectures thus needing adequate guidelines for the choice of the best one to be implanted in a patient-specific anatomic region. We propose a mechanobiology-based optimization algorithm capable of determining, for bone tissue scaffolds with an assigned geometry, the optimal value Lopt of the compression load to which they should be subjected, i.e. the load value for which the formation of the largest amounts of bone is favoured and hence the successful outcome of the scaffold implantation procedure is guaranteed. Scaffolds based on hexahedron unit cells were investigated including pores differently dimensioned and with different shapes such as elliptic or rectangular. The algorithm predicted decreasing values of the optimal load for scaffolds with pores with increasing dimensions. The optimal values predicted for the scaffolds with elliptic pores were found higher than those with rectangular ones. The proposed algorithm can be utilized to properly guide the surgeon in the choice of the best scaffold type/geometry that better satisfies the specific patient requirements.

Keywords: Computational Mechanobiology | Hexahedron Unit Cell | Numerical Optimization Algorithms | Printing of Biomaterials | Scaffolds for Bone Tissue Engineering

[45] Manghisi V.M., Fiorentino M., Gattullo M., Boccaccio A., Bevilacqua V., Cascella G.L., Dassisti M., Uva A.E., Experiencing the Sights, Smells, Sounds, and Climate of Southern Italy in VR, IEEE Computer Graphics and Applications, 37(6), 19-25, (2017). Abstract
X

Abstract: This article explores what it takes to make interactive computer graphics and VR attractive as a promotional vehicle, from the points of view of tourism agencies and the tourists themselves. The authors exploited current VR and human-machine interface (HMI) technologies to develop an interactive, innovative, and attractive user experience called the Multisensory Apulia Touristic Experience (MATE). The MATE system implements a natural gesture-based interface and multisensory stimuli, including visuals, audio, smells, and climate effects.

Keywords: computer graphics | gesture controls | human-machine interface | multisensory virtual environment | natural user interfaces

[46] Boccaccio A., Genchi G., Lamberti L., Pappalettere C., TIME-AVERAGE HOLOGRAPHY to ANALYZE DYNAMIC BEHAVIOR of SKIN TISSUES under DIFFERENT CONDITIONS, Journal of Mechanics in Medicine and Biology, 17(1), (2017). Abstract
X

Abstract: This study aims to investigate the feasibility of using time-average holography to verify the integrity of skin tissue samples and detect changes in their mechanical response caused by exposure to thermal perturbations, radiations and mechanical loading. For that purpose, chicken skin samples are put into vibration and the corresponding modes are monitored by means of an optical set up based on time average holographic interferometry. Mode shapes of base samples computed by a parametric finite element model are consistent with experimental data. The holographic set up correctly detects the presence of defects previously included in the sample. Dynamic behavior of skin samples under various conditions of low/high temperature and load or exposed, for different periods of time, to UV radiation and microwaves also is successfully monitored. The reliability and robustness of the proposed approach is tested by performing the holographic observations on a large number of samples under different conditions. Potential benefits that may derive from the use of time-average holography in dermatology and plastic surgery (for example, in the quality control of artificial skin tissues to be implanted) are finally discussed.

Keywords: defects and exposure to heat/radiation/microwaves | modal analysis | Skin tissue | time-average holography

[47] Boccaccio A., Uva A.E., Papi M., Fiorentino M., De Spirito M., Monno G., Nanoindentation characterisation of human colorectal cancer cells considering cell geometry, surface roughness and hyperelastic constitutive behaviour, Nanotechnology, 28(4), (2017). Abstract
X

Abstract: Characterisation of the mechanical behaviour of cancer cells is an issue of crucial importance as specific cell mechanical properties have been measured and utilized as possible biomarkers of cancer progression. Atomic force microscopy certainly occupies a prominent place in the field of the mechanical characterisation devices. We developed a hybrid approach to characterise different cell lines (SW620 and SW480) of the human colon carcinoma submitted to nanoindentation measurements. An ad hoc algorithm was written that compares the force-indentation curves experimentally retrieved with those predicted by a finite element model that simulates the nanoindentation process and reproduces the cell geometry and the surface roughness. The algorithm perturbs iteratively the values of the cell mechanical properties implemented in the finite element model until the difference between the experimental and numerical force-indentation curves reaches the minimum value. The occurrence of this indicates that the implemented material properties are very close to the real ones. Different hyperelastic constitutive models, such as Arruda-Boyce, Mooney-Rivlin and Neo-Hookean were utilized to describe the structural behaviour of indented cells. The algorithm was capable of separating, for all the cell lines investigated, the mechanical properties of cell cortex and cytoskeleton. Material properties determined via the algorithm were different with respect to those obtained with the Hertzian contact theory. This demonstrates that factors such as: the cell geometry/anatomy and the hyperelastic constitutive behaviour, which are not contemplated in the Hertz's theory hypotheses, do affect the nanoindentation measurements. The proposed approach represents a powerful tool that, only on the basis of nanoindentation measurements, is capable of characterising material at the subcellular level.

Keywords: cell cortex | cell geometry | colon carcinoma | cytoskeleton | finite element method | nanoindentation | rough surface

[49] Corsalini M., Pettini F., Di Venere D., Ballini A., Chiatante G., Lamberti L., Pappalettere C., Fiorentino M., Uva A.E., Monno G., Boccaccio A., An optical system to monitor the displacement field of glass-fibre posts subjected to thermal loading, Open Dentistry Journal, 10, 610-618, (2016). Abstract
X

Abstract: Endocanalar posts are necessary to build up and retain coronal restorations but they do not reinforce dental roots. It was observed that the dislodgement of post-retained restorations commonly occurs after several years of function and long-term retention may be influenced by various factors such as temperature changes. Temperature changes, in fact, produce micrometric deformations of post and surrounding tissues/materials that may generate high stress concentrations at the interface thus leading to failure. In this study we present an optical system based on the projection moiré technique that has been utilized to monitor the displacement field of endocanalar glass-fibre posts subjected to temperature changes. Measurements were performed on forty samples and the average displacement values registered at the apical and middle region were determined for six different temperature levels. A total of 480 displacement measurements was hence performed. The values of the standard deviation computed for each of the tested temperatures over the forty samples appear reasonably small which proves the robustness and the reliability of the proposed optical technique. The possible implications for the use of the system in the applicative context were discussed.

Keywords: Dental materials | Endocanalar post | Projection moiré | Thermal deformation | Thermal stress

[50] Fiorentino M., Radkowski R., Boccaccio A., Uva A.E., Magic mirror interface for augmented reality maintenance: An automotive case study, Proceedings of the Workshop on Advanced Visual Interfaces AVI, 07-10-June-2016, 160-167, (2016). Abstract
X

Abstract: We present a novel interaction method for augmented industrial maintenance based on a "magic mirror" interface and virtual motion buttons. The system includes a video camera for object tracking, a video\depth camera for capturing user gestures, a projector for displaying technical instruction to the operator and a LCD monitor providing feedback of the virtual buttons. The operator can trigger maintenance commands by directional swift of the hands in regions sensitive to motion speed and direction. The main advantage of the presented interface is that it can work in realistic industrial conditions: (i) operators wearing gloves, (ii) operators handling tools, (iii) presence of moving machinery and personnel in the background. We measured the performances of the system with a laboratory test and we proved the feasibility with an automotive inspection test case. We calculated an average interaction time below 2 seconds and an error rate lower than 5%. However, we found some performances limitations if the operator is handling tools.

Keywords: Augmented reality | Computer assisted maintenance | Human computer interfaces | Motion buttons

[51] Uva A.E., Fiorentino M., Gattullo M., Colaprico M., De Ruvo M.F., Marino F., Trotta G.F., Manghisi V.M., Boccaccio A., Bevilacqua V., Monno G., Design of a projective AR workbench for manual working stations, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9768, 358-367, (2016). Abstract
X

Abstract: We present the design and a prototype of a projective AR workbench for an effective use of the AR in industrial applications, in particular for Manual Working Stations. The proposed solution consists of an aluminum structure that holds a projector and a camera that is intended to be mounted on manual working stations. The camera, using a tracking algorithm, computes in real time the position and orientation of the object while the projector displays the information always in the desired position. We also designed and implemented the data structure of a database for the managing of AR instructions, and we were able to access this information interactively from our application.

[52] Boccaccio A., Uva A.E., Fiorentino M., Mori G., Monno G., Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach, PLoS ONE, 11(1), (2016). Abstract
X

Abstract: Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.

[53] Boccaccio A., Uva A.E., Fiorentino M., Lamberti L., Monno G., A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds, International Journal of Biological Sciences, 12(1), 1-17, (2016). Abstract
X

Abstract: Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young’s modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young’s modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria.

Keywords: Mechano-regulation algorithm | Mechanobiology | Numerical optimization | Scaffold microstructure

[54] Boccaccio A., Lamberti L., Papi M., De Spirito M., Pappalettere C., A deeper look into immature porcine Zona Pellucida visco-hyperelasticity, Conference Proceedings of the Society for Experimental Mechanics Series, 6, 85-89, (2016). Abstract
X

Abstract: The usual assumption made in mechanical characterization of soft biotissues with Atomic Force Microscopy (AFM) is that the specimen behaves as a purely elastic material. However, there is a limit indentation rate below which viscous effects can be neglected. A parametric study including about 200 FEM analyses shows that in the case of immature porcine zona pellucida (ZP) samples viscous effects become more significant for sharp tips. A linear relationship between the limit indentation rate and the geometry of the AFM probe is derived for the porcine ZP samples analyzed in this study.

Keywords: Atomic Force Microscopy | Indentation rate | Mechanical characterization | Probe geometry | Soft matter | Viscous effects

[55] Sciammarella C.A., Lamberti L., Boccaccio A., Determination of cardiac wall deformations from MRI images, Conference Proceedings of the Society for Experimental Mechanics Series, 6, 69-83, (2016). Abstract
X

Abstract: Three-dimensional deformation analysis of human organs is very important from both diagnostic and therapeutic point of view. For example, comparing the deformation field in healthy and pathologic cardiac walls in the systolic phase allows to gather early and accurate information on the onset of heart diseases. MRI tagging is utilized in medicine to visualize with a great deal of detail the structure and morphology of tissues. The tagging process introduces a volumetric system of planes of reference similar to the process of introducing a grating in the 3-D moiré method in transparent media. The paper will analyze the kinematics of 3-D deformation fields and the fundamental concepts involved in 3-D deformation analysis within the restrictions imposed by the MRI method thus providing solutions for the inherent shortcomings encountered in the MRI tagging technique.

Keywords: Deformation of cardiac wall | Digital moiré | Large deformation analysis | MRI tagging | Rotations

[56] Boccaccio A., Martino F., Pappalettere C., A novel moiré-based optical scanning head for high-precision contouring, International Journal of Advanced Manufacturing Technology, 80(1-4), 47-63, (2015). Abstract
X

Abstract: This paper is devoted to the design and implementation of a novel moiré-based optical head mounted on the robotic arm of a coordinate measuring machine. The optical components of the recently developed two-projector moiré setup were miniaturized and integrated in the optical head. Special care was taken in minimizing the weight of the resulting structure so as to reduce as much as possible the forces acting on the robotic arm. The prototype of the optical head was tested by contouring the shape of different objects and measuring the displacements of a metallic bar subjected to compression loading. Measurements conducted with the proposed optical head were consistent with those obtained via a coordinate measuring machine (CMM). The values of the dimensions found fell always within the average ± standard deviation interval measured with the CMM. The optical head appears very suited for contouring the shape of objects and for determining the out-of-plane displacement field of mechanical components subjected to specific boundary and loading conditions. Furthermore, the system can be easily implemented inline in an industrial context to perform measurements as a product is being manufactured.

Keywords: Contouring | Coordinate measuring machine (CMM) | Optical scanning head | Projection moiré | Reverse engineering

[57] Boccaccio A., Lamberti L., Papi M., De Spirito M., Pappalettere C., Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials, Nanotechnology, 26(32), (2015). Abstract
X

Abstract: Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

Keywords: atomic force microscopy | finite element analysis | indentation rate | soft material samples | tip geometry | visco-hyperelasticity

[58] Pettini F., Corsalini M., Savino M.G., Stefanachi G., Di Venere D., Pappalettere C., Monno G., Boccaccio A., Roughness analysis on composite materials (Microfilled, nanofilled and silorane) after different finishing and polishing procedures, Open Dentistry Journal, 9, 357-367, (2015). Abstract
X

Abstract: The finishing and polishing of composite materials affect the restoration lifespan. The market shows a variety of finishing and polishing procedures and the choice among them is conditioned by different factors such as the resulting surface roughness. In the present study, 156 samples were realized with three composite materials,-microfilled, nanofilled and silorane-, and treated with different finishing and polishing procedures. Profilometric analyses were carried out on the samples’ surface, the measured roughness values were submitted to statistical analysis. A complete factorial plan was drawn up and two-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of roughness: (i) material; (ii) polishing/finishing procedure. Tukey post-hoc test was also conducted to evaluate any statistically significant differences between the material/procedure combinations. The results show that the tested materials do not affect the resulting surface quality but roughness values depend on the finishing/polishing procedure adopted. The procedures that involve: (a) the finishing with medium Sof-Lex discs and (b) the finishing with two tungsten carbide multi-blade milling cutters Q series and UF series are those that allow the lowest values of roughness to be obtained.

Keywords: Composite | Finishing | Polishing | Profilometer | Surface roughness

[59] Di Comite M., Crincoli V., Fatone L., Ballini A., Mori G., Rapone B., Boccaccio A., Pappalettere C., Grassi F.R., Favia A., Quantitative analysis of defects at the dentin-post space in endodontically treated teeth, Materials, 8(6), 3268-3283, (2015). Abstract
X

Abstract: The objective of this study was to assess frequency and extension of the defects affecting the dentin-post interface after using different combinations of irrigants and sealers. The experimental work was conducted on single-rooted teeth extracted for orthodontic reasons. The specimens were divided into different groups, according to irrigant and endodontic cement utilized, and endodontically instrumented. After fiberglass posts cementation, cross sections were obtained at apical, middle and coronal level of the root and submitted to quantitative analyses. Different types of defects were found: bubbles, bonding defects, polymerization defect, and cement residues. The percent extension of each defect and its frequency were related to the specific irrigant/sealer combination and to the root level. Detachments of the material from dentin were found only at apical and middle levels. Chlorhexidine digluconate seems to have more beneficial effects if compared to sodium hypochlorite: samples prepared with chlorhexidine digluconate showed a higher performance, with roots including null to few defects. In detail, samples treated with chlorhexidine digluconate and Pulp Canal Sealer showed the lowest frequency and the smallest dimension of defects.

Keywords: Adhesive defects | Endodontic cements | Endoposts | Irrigants | Morphometric analysis

[60] Sciammarella C.A., Lamberti L., Boccaccio A., Data processing techniques to analyze large 3-d deformations of cardiac cycles, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 63-87, (2015). Abstract
X

Abstract: Quantification of 3-D deformations of human organs plays an important role in the understanding phenomena that have an impact in medical diagnosis and treatment of diseases. One important example is the mechanics of heart functions. Comparing normal deformation patterns of the cardiac cycle in healthy and diseased individuals can be a diagnostic tool that provides early and accurate indications of the onset of heart diseases. The tagging technique is an experimental mechanics method that makes it possible to utilize the extensive literature existing on the analysis of deformations utilizing the digital moire´ method for accurate and fast quantification of the heart 3-D kinematics. MRI tagging is an imaging technique used in medicine to visualize the structures of tissues of the human body in detail. MRI uses of the phenomenon of nuclear magnetic resonance to image tissues by exciting the nuclei of atoms in the tissue. Because of the different chemical composition of the tissues it can provide details that cannot be visible with CT Scans. By modulating magnetization it is possible to inscribe lattice-patterns in the tissue volume. These lattices are fixed to the under laying tissues for periods of time long enough to follow a cardiac cycle. The objective of this paper is to outline image processing techniques that can be utilized to decode the displacements and strains taking into consideration that one is dealing with large 3-D deformations that form a time sequence of images. These techniques are based on fundamental principles that have been developed in the field of digital moire´.

Keywords: Deformation of cardiac tissues | Digital moiré | Large deformations | MRI | MRI tagging

[61] Boccaccio A., Lamberti L., Papi M., Douet C., Goudet G., De Spirito M., Pappalettere C., Study on the visco-hyperelastic behavior of the zona pellucida, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 53-62, (2015). Abstract
X

Abstract: The zona pellucida (ZP) is a specialized extracellular matrix surrounding the developing oocyte. This thick matrix consists of different types of glycoprotein, which have different roles in fertilization. Nowadays several techniques are developed and refined to establish the ZP mechanical response. The assumption at the basis of these methods is that the ZP behaves like an elastic body, dissipative forces are neglected, and thus the Young modulus value remains unaffected by probe dynamics. On the contrary dissipative force are strongly regulated by the slippage of ZP chains past one another whereas the absolute reaction force value is mainly due to the architecture of the ZP structure (number of cross-links and distances between knots). Elastic deflection is then due to the ability of each chain to stretch, whereas viscous flow is caused by the sliding of the molecules over one another. Therefore viscous reaction forces generated by the ZP have to be considered one of the main player in regulating the sperm transit but their peculiar behavior along the ZP structure is still poorly understood. In this context, for the first time, we developed and verified a visco-hyperelastic model able to reproduce the ZP reaction force stressed at different probe rate.

Keywords: Atomic force microscopy | Finite element analysis | Nonlinear optimization | Porcine zona pellucida | Prony series | Visco-hyperelasticity

[62] Boccaccio A., Brunelli R., Lamberti L., Papi M., Parasassi T., De Spirito M., Pappalettere C., A preliminary investigation on the mechanical behavior of umbilical cord with moire´ techniques, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 47-52, (2015). Abstract
X

Abstract: The umbilical cord is a peculiar and complex structure, about 50–60 cm in length and 1–2 cm in diameter, that is essentially composed of three vessels, i.e. the umbilical vein and two umbilical arteries, arranged in coils around the vein surrounded by a great amount of support tissue, the Wharton’s Jelly (WJ) that binds and encases the umbilical vessels. WJ is a mucoid connective tissue (5 % cells, 95 % extracellular matrix) described as a three-dimensional spongy network of interlacing collagen fibers and small woven bundles of glycoprotein microfibrils with an interdispersed soluble phase composed by hydrophylic hyaluronans and proteoglycans. WJ grants the protection of the umbilical vessels against compressive forces due to fetal movements and uterine contractions and is very important to guarantee venous and arterial umbilical blood flows. WJ response to mechanical loading is not well understood; another unsolved problem concerns WJ putative contribution to store and release the energy of the cardiac cycle, therefore in maintaining the anterograde flow in the cord arteries. This article presents a preliminary study on the mechanical behavior of umbilical cord. For that purpose, an optical set up based on intrinsic moire´ will be developed. Slices cut in the transverse directions of the cord will be submitted to equibiaxial tests and specimen deformations will be monitored in real time with moire´ by printing a grating on the cord slice. In this way, it will be possible to gather information on the mechanical anisotropy of the cord.

Keywords: Anisotropy | Biomaterials | Intrinsic moiré | Mechanical characterization | Umbilical cord

[63] Boccaccio A., Messina A., Pappalettere C., Scaraggi M., Finite element modelling of bone tissue scaffolds, Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, 485-511, (2014). Abstract
X

Abstract: Nowadays, it is widely recognized that a large number of phenomenological degrees of freedom basically rule the functionality of bone tissue scaffolds. As a consequence of this, the design of scaffolds for tissue engineering involves multidisciplinary and multi-scale aspects, the latter being the subject of intensive investigation by the research community. In this chapter we present an overview on the computational aspects of bone tissue engineering, with particular emphasis on the recent mechanobiological based finite element models, as well as on novel aspects regarding the numerical characterization of the network of scaffold voids.

Keywords: Bone tissue engineering | Finite element modelling | Mechanobiology | Percolation analysis | Scaffold

[64] Boccaccio A., Lamberti L., Papi M., De Spirito M., Douet C., Goudet G., Pappalettere C., A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida, Interface Focus, 4(2), (2014). Abstract
X

Abstract: The zona pellucida (ZP) is a specialized extracellular matrix surrounding the developing oocyte. This thick matrix consists of various types of glycoprotein that play different roles in the fertilization process. Nowadays, several techniques are available for assessing ZP's mechanical response. The basic assumption behind these methods is that the ZP behaves like an elastic body: hence, dissipative forces are neglected and Young's modulus remains unaffected by probe dynamics. However, dissipative forces are strongly regulated by the slippage of ZP chains past one another while reaction forces related to elastic deformations (driven by the ability of each chain to stretch) depend on the ZP structure (i.e. number of cross-links and distances between knots). Although viscous reaction forces generated by the ZP are one of the main factors regulating sperm transit, their peculiar behaviour along the ZP structure remains poorly understood and rarely investigated. In order to overcome this limitation, a novel visco-hyperelastic model describing the porcine ZP reaction forces generated by nanoindentations at different probe rates is developed and verified in this study. Visco-hyperelastic parameters of porcine ZP membranes are determined by means of a hybrid characterization framework combining atomic force microscopy nanoindentation measurements, nonlinear finite-element analysis and nonlinear optimization. Remarkably, it is possible to separate the contributions of hyperelastic and viscous terms to ZP mechanical response and evaluate the error made in the determination of ZP mechanical properties if viscous effects were not considered. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Keywords: Atomic force microscopy | Finite-element analysis | Nonlinear optimization | Porcine zona pellucida | Prony series | Visco-hyperelasticity

[65] Corsalini M., Di Venere D., Pettini F., Stefanachi G., Catapano S., Boccaccio A., Lamberti L., Pappalettere C., Carossa S., A comparison of shear bond strength of ceramic and resin denture teeth on different acrylic resin bases, Open Dentistry Journal, 8(1), 241-250, (2014). Abstract
X

Abstract: The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the differently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indicated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermalcuring resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acrylic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting.

Keywords: Acrylic Resin Teeth | Ceramic Teeth | Resin Bases | Sandblasting | Shear Bond Strength

[66] Boccaccio A., Kelly D.J., Pappalettere C., A mechano-regulation model to optimize design of minimally invasive percutaneous fixation devices for treatment of fractured vertebrae, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 93-98, (2014). Abstract
X

Abstract: Minimally invasive percutaneous fixation techniques play a role of crucial relevance in the clinical practice. In spite of their consolidated use, little is reported in the literature to provide a mechanobiological explanation on how design of fixation devices can affect the healing process within fractured vertebrae. The aim of the study is to develop a multi-scale mechano-regulation model capable of predicting how the patterns of tissue differentiation within a vertebral fracture change in the presence or in the absence of fixation devices and how the dimensions of the device, and the materials it is made from, can affect the outcome of the healing process. To this purpose, a multi-scale mechano-regulation model is developed that combines a macro-scale model representing the spinal segment L3-L4-L5 including the fractured body of the L4 vertebra, and a micro-scale model of a fractured portion of cancellous bone. The macro-scale model includes also a minimally invasive percutaneous fixation device. The above mentioned model allows us to investigate how spatial and temporal patterns of tissue differentiation in the fracture gap change for different dimensions of the fixation device components and for different materials (Ti-6A1-4V alloy and Co-Cr alloy). Furthermore, the model provides information on the stress state in the fixation device and hence allows the risk of failure of the device itself to be estimated. The mechanical properties of the forming tissue change as the healing process progresses. In order to validate the mechano-regulation model, displacement fields will be measured with moiré and holography and compared with numerical computations. The model predicts that fixation devices significantly shorten healing times. Increasing values of the rod diameter D and decreasing values of its radius of curvature R lead to shorter durations of the healing period. Manufacturing the rods in Cobalt-Chrome alloy is predicted to reduce slightly the healing period by providing greater mechanical stability within the fracture callus. © The Society for Experimental Mechanics, Inc. 2014.

Keywords: Mechanobiology | Minimally invasive percutaneous fixation | Moiré | Tissue differentiation | Vertebral fracture

[67] Sciammarella C.A., Lamberti L., Boccaccio A., Sciammarella F.M., The kinematics and dynamics of 3-D displacement fields, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 43-67, (2014). Abstract
X

Abstract: In the last few decades Experimental Mechanics, helped by advanced technologies to gather 3-D spatial information in non-transparent media, has evolved into a very general tool. It has become possible to observe the internal volume of engineering materials and in the area of biomechanics living internal tissues. This paper contains a brief review of Continuum Mechanics mathematical models that are available to formulate problems in 3-D including large deformations. The extension of the experimental methods that measure displacements in 2-D to 3-D is presented. Two important cases are considered: (a) use of deterministic signals, (b) use of random signals. In order to separate the complexity of the subject of 3-D analysis from the difficulties that arise from the use of random signals, the connection between mathematical models and their experimental determination is presented utilizing deterministic signals. The extension of the use of random signals to the determination of displacements in 2-D to 3-D is outlined. A new method to extract displacement information from random signals is developed and an example of application is provided. Two methods to extract displacement information in 3-D, the classical method based on displacement projections and discrete image correlation (DIC) based on following gradients of intensities are compared. There are many complex steps involved in data processing aside the basic approach, this circumstance makes difficult a comparison between the two methods, however it is possible to conclude that the results are in fair agreement. © The Society for Experimental Mechanics, Inc. 2014.

Keywords: 3-D continuum dynamics | 3-D continuum kinematics | 3-D displacement analysis discrete image correlation (DIC) | 3-D displacement measurement (deterministic, random signals) | Experimental 3-D displacement measurements opaque media | Large deformations

[68] Boccaccio A., Casavola C., Lamberti L., Pappalettere C., Structural response of polyethylene foam-Based sandwich panels subjected to edgewise compression, Materials, 6(10), 4545-4564, (2013). Abstract
X

Abstract: This study analyzes the mechanical behavior of low density polyethylene foam core sandwich panels subjected to edgewise compression. In order to monitor panel response to buckling, strains generated in the facesheets and overall out-of-plane deformations are measured with strain gages and projection moiré, respectively. A finite element (FE) model simulating the experimental test is developed. Numerical results are compared with moiré measurements. After having been validated against experimental evidence, the FE model is parameterized, and a trade study is carried out to investigate to what extent the structural response of the panel depends on the sandwich wall construction and facesheet/core interface defects. The projection moiré set-up utilized in this research is able to capture the sudden and very localized buckling phenomena occurring under edgewise compression of foam-based sandwich panels. Results of parametric FE analyses indicate that, if the total thickness of the sandwich wall is fixed, including thicker facesheets in the laminate yields a larger deflection of the panel that becomes more sensitive to buckling. Furthermore, the mechanical response of the foam sandwich panel is found to be rather insensitive to the level of waviness of core-facesheet interfaces. © 2013.

Keywords: Buckling | Edgewise compression | Facesheet-to-core thickness ratio | Facesheet/core interface waviness | Foam-based coresandwich panels | Nonlinear finite element analysis | Out-of-plane displacement | Projection moiré

[69] Sciammarella C.A., Boccaccio A., Lamberti L., Pappalettere C., Rizzo A., Signore M.A., Valerini D., Measurements of Deflection and Residual Stress in Thin Films Utilizing Coherent Light Reflection/Projection Moiré Interferometry, Experimental Mechanics, 53(6), 977-987, (2013). Abstract
X

Abstract: Thin film technology is an area of great importance in current applications of opto-electronics, electronics, MEMS and computer technology. A critical issue in thin film technology is residual stresses that arise when the coating is deposited onto a substrate. Residual stresses can be very large in magnitude and have detrimental effects on the role that the thin film must play. To save development time on coating deposition processes it is important to perform accurate residual stresses measurements in situ in real time where the deposition is made. A novel optical set up is developed in this study to measure deflections and residual stresses generated in coated specimens that can be applied directly in the reactor utilized in the deposition process. Experimental results are in good agreement with other measurements carried out independently and other data reported in literature for thin films like those tested in the experiments. © 2013 Society for Experimental Mechanics.

Keywords: Projection moiré | Reflection moiré | Residual stresses | Thin films

[70] Crincoli V., Perillo L., Di Bisceglie M.B., Balsamo A., Serpico V., Chiatante F., Pappalettere C., Boccaccio A., Friction forces during sliding of various brackets for malaligned teeth: An in vitro study, The Scientific World Journal, 2013, (2013). Abstract
X

Abstract: Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. © 2013 Vito Crincoli et al.

[71] Boccaccio A., Papi M., De Spirito M., Lamberti L., Pappalettere C., Effect of the residual stress on soft sample nanoindentation, Applied Physics Letters, 102(13), (2013). Abstract
X

Abstract: Nanoindentation has recently emerged as a powerful tool for measuring nano- and microscale mechanical properties in tissues and other biomaterials. This technique has been used to measure the mechanical properties of microstructural features in cells, biopolymer networks, and complex biomaterials. Despite the wide use of the nanoindentation, the residual stress effect in the determination of soft samples elastic properties is still poorly explored. By using parametric finite element analysis and atomic force spectroscopy, we determined the relationships between residual stress and indenter geometry and how it can affect the structural response of polymeric spherical shells flattened on a hard surface. © 2013 AIP Publishing LLC.

[72] Sciammarella C.A., Boccaccio A., Lamberti L., Pappalettere C., Recent developments in the contouring of surfaces, Conference Proceedings of the Society for Experimental Mechanics Series, 3, 155-163, (2013). Abstract
X

Abstract: Contouring of surfaces covers both metrology measurements and determination of displacements. There are a variety of scientific methods and corresponding devices used in contouring problems. Optical methods of contouring (OMC) have been proven to compete with the high precision and accuracy of Coordinate Measurement Machines (CMM). A general model of moiré contouring was recently developed by C.A. Sciammarella and his collaborators. The model integrates concepts of projective geometry and differential geometry of surfaces and utilizes symmetric projectors to reproduce the condition of projection from infinity. For specimens with dimensions ranging from few mm to more than 1 m, the measuring system and software provided standard deviations of the measured values that can reach 1/500 of the theoretical sensitivity defined by the pitch of the utilized grating. This paper will discuss the most recent trends in the optical contouring of surfaces focusing in particular on how to extend the general model of moiré contouring to the measurement of the three-dimensional displacement field of objects of arbitrary shape. © The Society for Experimental Mechanics, Inc. 2013.

[73] Boccaccio A., Frassanito M.C., Lamberti L., Brunelli R., Maulucci G., Monaci M., Papi M., Pappalettere C., Parasassi T., Sylla L., Ursini F., De Spirito M., Nanoscale characterization of the biomechanical hardening of bovine zona pellucida, Journal of the Royal Society Interface, 9(76), 2871-2882, (2012). Abstract
X

Abstract: The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. © 2012 The Royal Society.

Keywords: Atomic force microscopy | Finite element analysis | Finite indentation | Hyperelasticity | Nonlinear optimization | Zona pellucida biomechanical hardening

[74] Boccaccio A., Carbone C., Galietti U., Mastropasqua F., Pappalettere C., A novel design of ventricular assist device: An in vitro feasibility study, Minimally Invasive Therapy and Allied Technologies, 21(6), 377-387, (2012). Abstract
X

Abstract: Left ventricular assist devices (LVADs) work as a bypass between the left ventricular apex and the ascending aorta. The surgical procedure for their insertion requires the opening of the cardiac cavities and the dissection of the great vessels, the blood is constrained to flow through the device components and the risk can be run of thrombogenesis, haemolysis and infections. A possible strategy to overcome this limitation consists in utilizing external systems that assist the heart in its contraction from the outside without directly transporting the blood. In this study we conduct the feasibility analysis of a novel external LVAD design that does not require the opening of the cardiac cavities and the dissection of the great vessels and that allows the removal procedure to be easily achieved. The device, including a stepper motor, three metallic wires and three elastic elements, works alternatively between a contraction condition where it induces an elastic compulsion on the heart and a release condition where it elastically releases the organ. The values of force acting on the wires and the values of current supplied to the motor were measured and utilized for a preliminary study design. The experimental measurements demonstrated the feasibility of the system. © 2012 Informa Healthcare.

Keywords: Cardiac failure | Circulatory assist devices | Feasibility study | Ventricular assist device

[75] Grassi F.R., Pappalettere C., Di Comite M., Corsalini M., Mori G., Ballini A., Crincoli V., Pettini F., Rapone B., Boccaccio A., Effect of different irrigating solutions and endodontic sealers on bond strength of the dentin - Post interface with and without defects, International Journal of Medical Sciences, 9(8), 642-654, (2012). Abstract
X

Abstract: Aims. To investigate how the interfacial shear strength of the dentin - post interface with and without defects changes for different combinations irrigant/sealer. Methods. In forty human decoronated and instrumented teeth, fibreglass posts were inserted. The obtained root segments were randomly assigned to four different groups according to the irrigant adopted and the cement used to seal the root canal. The root segments were processed for metyl-methacrylate embedding. Serial sections were obtained and submitted to histomorphometric analyses in order to observe any defect of adhesion at the dentin - post interface and to measure the defects' dimension. The serial sections were also submitted to micro-push-out test. The measured shear strength values were subjected to statistical analysis by one-way ANOVA. The values of bond strength determined for the defective samples were correlated with the dimension of the defects. Finite element models were built to interpret and corroborate the experimental findings. Results. ANOVA showed that the generic combination irrigant/sealer does not affect the interfacial shear strength values. The bond strength of the samples without defects was averagely twice as large as that of the defective samples. The defects occupying more than 12 % of the total transverse section area of the endodontic cement layer led to a reduction of the bond strength of about 70 %. The predictions of the finite element models were in agreement with the experimental results. Conclusion. Defects occupying less than 2 % of the total transverse section area of the cement layer were shown to be acceptable as they have rather negligible effects on the shear strength values. Technologies/protocols should be developed to minimize the number and the size of the defects. © Ivyspring International Publisher.

Keywords: Defect of Adhesion | Finite Element Method | Histomorphometric Analyses | Interfacial Shear Strength | Micro-Push-Out Test | Microradiography

[76] Boccaccio A., Kelly D.J., Pappalettere C., A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation, Medical and Biological Engineering and Computing, 50(9), 947-959, (2012). Abstract
X

Abstract: In spite of the consolidated clinical use of minimally invasive percutaneous fixation techniques, little is reported in the literature providing a mechanobiological explanation for how the design of fixation devices can affect the healing process within fractured vertebrae. The aim of this study was to develop a multi-scale mechano-regulation model capable of predicting how the patterns of tissue differentiation within a vertebral fracture change in the presence or in the absence of fixation devices and how the dimensions of the device, and the materials it is made from (Ti-6Al-4V alloy and cobalt chrome alloy) can affect the outcome of the healing process. The macro-scale model simulates the spinal segment L3-L4-L5, including the fractured body of the L4 vertebra, while the micro-scale model represents a fractured portion of cancellous bone. The macro-scale model also includes a minimally invasive percutaneous fixation device. The model predicts that fixation devices significantly shorten healing times. Increasing values of the rod diameter D and decreasing values of its radius of curvature R lead to shorter durations of the healing period. Manufacturing the rods in cobalt chrome alloy is also predicted to reduce slightly the healing period by providing greater mechanical stability within the fracture callus. © International Federation for Medical and Biological Engineering 2012.

Keywords: Mechanobiology | Minimally invasive percutaneous fixation | Spine | Tissue differentiation | Vertebral fracture

[77] Sciammarella C.A., Lamberti L., Boccaccio A., Sciammarella F.M., High precision contouring with moiré and related methods: A review, Strain, 47(SUPPL. 2), 43-64, (2011). Abstract
X

Abstract: Optical methods of contouring that utilise image recordings by cameras are based on a fundamental discipline, projective geometry. The 3-D world is projected in 2-D utilising a camera modelled in the technical literature by the pinhole camera. To get back 3-D information, the fundamental property measured is parallax. Parallax is a vector resulting from the difference of the projective coordinates of a point in space when projected onto a plane from two different points. The oldest method used for measuring parallax is photogrammetry. It is assumed to be the most precise technique, with the capability of obtaining 10 -5 of the largest dimension of the measured object. This study summarises the state-of-the-art methods based on projecting a spatial carrier. Starting with the concept of moiré as a form of photogrammetry, the different optical techniques for parallax determination are discussed. Although the moiré method has reached 1 μm accuracy in laboratory work, a question remains: can moiré become a standardised contouring technique yielding 10 -6 m accuracy? This study is devoted to the analysis of high accuracy contour measurements, through both theoretical derivations and experimental verifications. © 2010 Blackwell Publishing Ltd.

Keywords: contouring of surfaces | determination of parallax | geometrical primitives | merging of different views | optical measurement devices | projection moiré

[78] Frassanito M.C., Papi M., De Spirito M., Lamberti L., Boccaccio A., Arcovito G., Pappalettere C., Investigation of Zona Pellucida hardening with atomic force microscopy and nonlinear optimization, Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 3, 493-496, (2011). Abstract
X

Abstract: The Zona Pellucida (ZP) is the extracellular coat surrounding mammalian oocytes. The so called "zona hardening" has a key role in the fertilization process as it produces a block of polyspermy also through an increase of the stiffness of the membrane. The full comprehension of the mechanisms involved in the structural reorganization of the ZP leading to mechanical hardening as well as a correct estimation of its elastic properties is still lacking. In this study, mechanical properties of the ZP membranes extracted from mature and fertilized bovine oocytes were investigated with Atomic Force Microscopy nanoindentation measurements. Both inner and outer sides of the fertilized oocyte's ZP were characterized in order to investigate the propagation of the zona hardening through the thickness of the membrane. This work proposes the application of a hybrid procedure combining experimental measurements, Finite Element analysis and optimization algorithms to analyze the indentation curves.

Keywords: Atomic Force Microscopy | Hyperelasticity | Nanoindentation | Non linear optimization | Zona Pellucida

[79] Boccaccio A., Cozzani M., Pappalettere C., Analysis of the performance of different orthodontic devices for mandibular symphyseal distraction osteogenesis, European Journal of Orthodontics, 33(2), 113-120, (2011). Abstract
X

Abstract: The aim of this study was to investigate the performance of different orthodontic devices for mandibular symphyseal distraction osteogenesis (MSDO). Two performance parameters were analysed, the first of which concerned the stability guaranteed by a distractor in the fracture gap under mastication loads and the second the level of reliability with which a distractor transfers a given expansion to the mandibular bone, inasmuch as the more reliable the device the smaller the difference between the degree of expansion provided to the device and the displacement achieved on the mandibular arch. Hence, a non-linear finite element (FE) model of a human mandible with different devices (tooth-borne, bone-borne, and hybrid) was constructed and then utilized to assess the structural behaviour of the mandibular bone under distraction and mastication loads. An ad hoc algorithm was developed to simulate progressive expansion of the devices; a distraction protocol comprising a 10 day latency period and a 6 day distraction period was hypothesized. The first hypothetical expansion given to the device was 2 mm, and the five subsequent expansions were 1 mm. The results showed that the hybrid device was the most stable appliance under mastication loads, followed by the tooth- and bone-borne devices. However, parasitic rotations of the mandibular arms caused by mastication might counteract the benefits of distraction. The tooth-borne device was found to have the highest reliability in transferring expansion to the mandibular bone. For this device, mandibular expansion was less than the nominal aperture of the distractor by no more than 15 per cent. Lower values of reliability were achieved with the bone-borne device. As the values of the aperture of the appliances increased, the stability guaranteed in the fracture gap increased while the reliability in transferring expansion to the mandibular arch decreased. © The Author 2010.

[80] Boccaccio A., Kelly D.J., Pappalettere C., A mechano-regulation model of fracture repair in vertebral bodies, Journal of Orthopaedic Research, 29(3), 433-443, (2011). Abstract
X

Abstract: In this study a multi-scale mechano-regulation model was developed in order to investigate the mechanobiology of trabecular fracture healing in vertebral bodies. A macro-scale finite element model of the spinal segment L3-L4-L5, including a mild wedge fracture in the body of the L4 vertebra, was used to determine the boundary conditions acting on a micro-scale finite element model simulating a portion of fractured trabecular bone. The micro-scale model, in turn, was utilized to predict the local patterns of tissue differentiation within the fracture gap and then how the equivalent mechanical properties of the macro-scale model change with time. The patterns of tissue differentiation predicted by the model appeared consistent with those observed in vivo. Bone formation occurred primarily through endochondral ossification. New woven bone was predicted to occupy the majority of the space within the fracture site approximately 7-8 weeks after the fracture event. Remodeling of cancellous bone architecture was then predicted, with complete new trabeculae forming due to bridging of the microcallus between the remnant trabeculae. Copyright © 2010 Orthopaedic Research Society.

Keywords: finite element analysis | fracture repair | mechanobiology | tissue differentiation | vertebral body

[81] Boccaccio A., Casavola C., Lamberti L., Pappalettere C., Experimental analysis of foam sandwich panels with projection moiré, Conference Proceedings of the Society for Experimental Mechanics Series, 5, 249-256, (2011). Abstract
X

Abstract: The use of polymeric and metallic foam sandwich panels in naval, aerospace, railway and automotive constructions is rapidly growing in the recent years because of technological improvements in manufacturing processes. However, it is still difficult to establish a direct relationship between the mechanical properties possessed by the panel and the specific manufacturing process. Mechanisms behind panel deformation, crack growth, fracture initiation and propagation still are not completely understood and therefore are intensively studied. In particular, structural behavior under compression is a critical issue also in view of the lack of official standards on foam core sandwich panels. This work aims at studying mechanical properties of high density polyethylene foam core sandwich panels produced by rotational molding. These panels can be built without using adhesives as the polyethylene foam grows inside mold and then adheres to facesheets while material still is at high temperature. In the present study, polyethylene foam panels of different thickness are tested under edgewise compression loading. The resulting out-of-plane deformation is then monitored in detail with a projection moiré setup including two projectors and one camera.

[82] Sciammarella C.A., Boccaccio A., Frassanito M.C., Lamberti L., Pappalettere C., Measurement of residual stresses in diamond coated substrates utilizing coherent light projection moiré interferometry, Conference Proceedings of the Society for Experimental Mechanics Series, 5, 209-217, (2011). Abstract
X

Abstract: Thin film technology is an area of great importance in current applications of opto-electronics, electronics, MEMS and computer technology. A critical issue in thin film technology is represented by residual stresses that arise when thin films are applied to a substratum. Residual stresses can be very large in magnitude and may result in detrimental effects on the role of the thin film must play. For this reason it is very important to perform "online" measurements in order to control variables influencing residual stress. The research work presented in the paper represents the first step towards the practical solution of such a challenging problem. A methodology to measure residual stresses utilizing reflection/projection moiré interferometry to measure deflections of thin coated specimens is developed. Results are in good agreement with experimental values provided by well established measurement techniques. A special optical circuit for the in situ measurement of residual stresses is designed trying to satisfy the constraints deriving from the tight geometry of the vacuum system utilized to carry out the deposition.

[83] Frassanito M.C., Lamberti L., Boccaccio A., Pappalettere C., Discussion on hybrid approach to determination of cell elastic properties, Conference Proceedings of the Society for Experimental Mechanics Series, 5, 119-124, (2011). Abstract
X

Abstract: This study discusses the application of a hybrid experimental-numerical approach to analyze nano-indentation curves of a biological membrane acquired with an Atomic Force Microscope. The proposed procedure combines experimental measurements, FEM analysis and numerical optimization and is completely general. Variations of estimated Young modulus of the membrane are determined when attributing different constitutive laws to the sample and in the case of progressive blunting of the AFM tip during the measurement. Since traditional analysis of Atomic Force Microscope indentation curves relies on an inappropriate application of the classical Hertz theory, a comparison between the hybrid approach and the Hertzian model in the determination of the elastic properties of the sample is presented. In particular, it is found that large errors occur in the derivation of the Young modulus when the Hertzian model is used for the analyis of experimental data.

[84] Boccaccio A., Carbone C., Galietti U., Mastropasqua F., Pappalettere C., A novel electro-mechanical ventricular assist device for refractory cardiac insufficiency, MeMeA 2011 - 2011 IEEE International Symposium on Medical Measurements and Applications, Proceedings, 221-224, (2011). Abstract
X

Abstract: The most severe limitation of the Left Ventricular Assist Devices (LVADs) currently utilized is their invasivity; they work as a bypass between the left ventricular apex and the aorta. A possible strategy that can be adopted to overcome such a limitation consists in utilizing systems that assist the heart in its contraction from the outside without directly transporting the blood and that do not require highly invasive surgical treatments. In this study we conduct the feasibility analysis of a novel LVAD design that allows the principal limitations of traditional circulatory support systems to be overcome. © 2011 IEEE.

Keywords: Cardiac Failure | Circulatory Assist Devices | Ventricular Assist Device

[85] Boccaccio A., Ballini A., Pappalettere C., Tullo D., Cantore S., Desiate A., Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering, International Journal of Biological Sciences, 7(1), 112-132, (2011). Abstract
X

Abstract: Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. © Ivyspring International Publisher.

Keywords: Bone tissue engineering | Finite element analysis | Mechano-regulation algorithms | Mechanobiology | Scaffold

[86] Sciammarella C.A., Lamberti L., Sciammarella F.M., Demelio G.P., Dicuonzo A., Boccaccio A., Application of plasmons to the determination of surface profile and contact strain distribution, Strain, 46(4), 307-323, (2010). Abstract
X

Abstract: Free electrons in the surface of metals can produce surface plasmons if they are excited by evanescent waves. The surface plasmons are electromagnetic waves that by decaying can generate photons. These photons produce propagating waves that feed energy to an oscillating cavity. From this effect a Fabry-Perot like interferometer is generated. In view of this basic knowledge a truly novel application on how these plasmons can be used experimentally is introduced in this article. Essentially, by using the transformation of evanescent waves into propagating waves via the plasmon generation it is possible to perform high accuracy contouring of any metal surface as well as the determination of its contact stresses. A laser beam illuminates a glass-air-metal interface and through a proper optical setup it will produce double evanescent illumination. This illumination generates interference fringes that contain surface depth information as well as in-plane strain information. In order to show the robustness of the proposed technique, three different applications are presented in the paper. First, the surface roughness mapping of a copper plate is determined and the obtained values are in statistical agreement with the data measured by a mechanical profilometer. Second, the surface profiles of nickel alloy surfaces used as calibrated standards for the determination of R a values are obtained. The measured Ra values statistically agree with the values of the different standards. Finally, the contact strains of a copper cylinder on glass are also measured. The contact strains follow the trend predicted by the K.L. Johnson's model of contact. Local regions (asperities) experiment large plastic deformations. © 2010 Blackwell Publishing Ltd.

Keywords: contact between asperities | contact mechanics | contact strains at the micron range | plasmons | surface contouring at the micron range

[87] Boccaccio A., Pappalettere C., Mechanobiology of fracture healing in vertebral bodies and mandibular symphyseal distraction osteogenesis: A computational analysis, 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, DAS 2010, (2010).
[88] Sciammarella C.A., Lamberti L., Sciammarella F.M., Demelio G., Dicuonzo A., Boccaccio A., High accuracy micro scale measurements using a conventional far field microscope, Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009, 1, 173-181, (2009). Abstract
X

Abstract: The ability to utilize a conventional far field microscope to perform highly accurate measurements at the nano scale is presented. The free electrons on a metallic surface can be excited by evanescent waves producing surface plasmons. The surface plasmons are electromagnetic waves that by decaying can generate photons. These photons produce propagating waves that feed energy to an oscillating cavity. From this effect a Fabry-Perot like interferometer is generated. Essentially by using the transformation of evanescent waves into propagating waves via the plasmon generation it is possible to perform high accuracy contouring of any metal surface as well as the determination of its contact stresses. A laser beam illuminates a glass-air-metal interface and through proper setup it can produce double evanescent illumination. This illumination produces interference fringes that contain surface depth information as well as in-plane strain information. Some applications are discussed briefly to demonstrate the technique's unique capabilities. ©2009 Society for Experimental Mechanics Inc.

[89] Boccaccio A., Lamberti L., Pappalettere C., Quagliarella L., Evaluation and minimization of geometric reconstruction errors in fem models generated from CT-scan images, Journal of Mechanics in Medicine and Biology, 9(3), 301-327, (2009). Abstract
X

Abstract: CAD reconstruction of anatomical regions from computerized tomography (CT) scans is a very common approach in orthopaedic biomechanics. The CAD model is discretized into finite volume sub-domains and finite element (FE) analyses are performed in order to predict the distribution of stresses generated by applied loads. However, quality and reliability of numerical results depend on the level of accuracy reached in the meshing process. This paper analyzes some critical parameters that may affect the overall efficiency of the CT-FEM transformation process: scan threshold range, object size, and complexity. An optimization procedure for minimizing geometric errors on size and shape of reconstructed objects is presented. Finally, accuracy of stress predictions is evaluated for FE models that include known amounts of geometric errors. Compression and bending loads are considered. Results show that geometric and stress errors rapidly decrease as the objects to be reconstructed become larger in size. Optimal threshold ranges can be identified clearly for both an epoxy-resin benchmark model and a real bone specimen cut from a human lumbar vertebra. This allows geometric errors to be reduced significantly. © 2009 World Scientific Publishing Company.

Keywords: CT scanning | FEM | Geometric errors | Mesh generation | Reconstruction of geometry | Stress errors

[90] Gracco A., Cirignaco A., Cozzani M., Boccaccio A., Pappalettere C., Vitale G., Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage, European Journal of Orthodontics, 31(1), 12-20, (2009). Abstract
X

Abstract: The aims of this study were to analyse the stress distribution developing around an orthodontic miniscrew (OM) inserted into the maxilla and to determine the stress field changes for different screw lengths and for different levels of osseointegration occurring at the bone/screw interface.An integrated experimental/numerical approach was adopted. Using the photoelastic technique, the stress field arising in the bone after screw insertion and the application of the initial orthodontic load was assessed. The finite element (FE) method was used to determine the stress acting in the bony tissue after a given time following screw application, when, for the viscoelastic relaxation effects, the only stress field remaining was that due to the application of the orthodontic load. Different levels of osseointegration were hypothesized.Photoelastic analyses showed that stress distribution does not change significantly for moderate initial orthodontic loads. From the FE simulations, it was found that critical conditions occur for screws 14 mm long with an orthodontic load of 2 N. The optimal screw length seems to be 9 mm. For such a dimension, small stress values were found as well as low risk of lesion to the anatomical structures.

[91] Sciammarella C.A., Lamberti L., Boccaccio A., Cosola E., Posa D., General model for moiré contouring, part 2: Applications, Optical Engineering, 47(3), (2008). Abstract
X

Abstract: Applications are presented of the general shadow-projection moiré model described in the companion paper, "A general model for moiré contouring, part 1: theory." Two examples are discussed in detail. One example deals with the deflection of a large-size thin panel subjected to bending. The other example analyzes the accuracy that can be achieved in laser lithography rapid prototyping. The first example illustrates some theoretical aspects of the general contouring model proposed in this research and explains the reasons for differences between theoretical predictions and experimental results. In the second example, the whole process of data gathering and merging using geometric primitives and optimization techniques is demonstrated practically. Finally, a clear relationship between the measured standard deviations and moiré sensitivity values is obtained. The results show that the proposed methodologies lead to a quasi-quadratic correlation. © 2008 Society of Photo-Optical Instrumentation Engineers.

Keywords: contouring of surfaces | geometrical primitives | measurement of deflections | merging of different views | rapid prototyping | shadow/projection moiré

[92] Sciammarella C.A., Lamberti L., Boccaccio A., High precision contouring utilizing the moire method, Society for Experimental Mechanics - 11th International Congress and Exhibition on Experimental and Applied Mechanics 2008, 3, 1495-1510, (2008). Abstract
X

Abstract: The optical methods of contouring are based on a fundamental discipline, Projective Geometry. The 3-D world is projected in 2-D utilizing a camera modeled in the technical literature by a pinhole camera. To get back 3-D information the fundamental property measured is parallax. Parallax is a vector resulting from the difference of the projective coordinates of a point in the space when projected into a plane from two different points. The oldest method used to measure parallax is photogrammetry that at the same time is assumed to be the most precise technique, 10-5 of the largest dimension of the measured object. The paper summarizes the current state of the art of the projection moire method. Starting from the concept of projection moire (PM) as a form of photogrammetry, the different optical techniques for parallax determination are discussed. Although the projection moire method has reached 1 μm accuracy in laboratory work, a question remains: can PM become a standardized contouring technique yielding 10-6 accuracy? The paper is devoted to the analysis of this question, both through theoretical derivations and experimental verifications.

[93] Sciammarella C.A., Lamberti L., Boccaccio A., General model for moiré contouring, part 1: Theory, Optical Engineering, 47(3), (2008). Abstract
X

Abstract: In the current moiré literature, techniques to determine displacements, strains, and techniques to get geometrical parameters of surfaces using the shadow-projection moiré method are considered two separated branches of moiré. We have formulated a mathematical model that shows a deeper commonality between the two moiré applications: strain fields and surfaces are tensors of the second order. A direct consequence of this property is that a system of orthogonal grids is required in both cases when Cartesian tensors are utilized. The two systems of lines projected on a surface to get its contour are assimilated to parametric lines used in differential geometry to describe a surface. The classical moiré equations of projection and observation from infinity are extended to more general conditions of projection and observation. The use of four projectors (i.e., two groups of two projectors) in a mutually orthogonal system with one camera is shown to provide the necessary means to implement the model for high-accuracy contouring. Geometrical primitives are introduced to provide a simple and direct procedure to reduce all the measured values to a preselected coordinate system. Different views of the same surface are merged to the selected coordinate system directly without the need to introduce markers on the surface or utilize correlation methods to identify identical regions. Examples of the application of the new model of contouring to practical cases are presented in the companion paper "A general model for moiré contouring, part 2: applications." © 2008 Society of Photo-Optical Instrumentation Engineers.

Keywords: contouring of surfaces | geometrical primitives | merging of different views | moiré | shadow/projection moiré

[94] Boccaccio A., Vena P., Gastaldi D., Franzoso G., Pietrabissa R., Pappalettere C., Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 222(7), 1023-1036, (2008). Abstract
X

Abstract: The aim of this work is to assess the fracture risk prediction of the cancellous bone in the body of a lumbar vertebra when the mechanical parameters of the bone, i.e. stiffness, porosity, and strength anisotropy, of elderly and osteoporotic subjects are considered. For this purpose, a non-linear three-dimensional continuum-based finite element model of the lumbar functional spinal unit L4-L5 was created and strength analyses of the spongy tissue of the vertebral body were carried out. A fabric-dependent strength criterion, which accounts for the micro-architecture of the cancellous bone, based on histomorphometric analyses was used. The strength analyses have shown that the cancellous bone of none of the subject types undergoes failure under loading applied during normal daily life like axial compression; however, bone failure occurs for the osteoporotic segment, subjected to a combination of the compression preloading and moments in the sagittal or in the frontal plane, which are conditions that may not be considered to occur 'daily'. In particular, critical stress conditions are met because of the high porosity values in the horizontal direction within the cancellous bone. The computational approach presented in the paper can potentially predict the material fracture risk of the cancellous bone in the vertebral body and it may be usefully employed to draw failure maps representing, for a given micro-architecture of the spongy tissue, the critical loading conditions (forces and moments) that may lead to such a risk. This approach could be further developed in order to assess the effectiveness of biomedical devices within an engineering approach to the clinical problem of the spinal diseases. © 2008 IMechE.

Keywords: finite element analysis | fracture criterion | lumbar spine | osteoporosis | soft biological tissues

[95] Corsalini M., Carella M., Boccaccio A., Lamberti L., Pappalettere C., Catapano S., Carossa S., An alternative approach to the polishing technique for acrylic resin surfaces, International Journal of Prosthodontics, 21(5), 409-412, (2008). Abstract
X

Abstract: This study aimed to (1) devise a standardized method of polishing and finishing acrylic resins, (2) eliminate the variable linked to the single operator, and (3) guarantee the reproducibility of the conditions in which smoothness surface values are obtained for comparative purposes. Twenty acrylic resin samples were fabricated (Lucitone, Dentsply). Samples in group 1 were manually polished by a single experienced operator, while samples in group 2 were polished using an isoparallelometer. Surface roughness was measured for both groups with a ± 0.01-μm resolution profilometer (Mahr, GD25). Data analysis showed that mechanical polishing results in a more uniform surface quality. This preliminary investigation underscores the merits of a standardized method for polishing dental acrylic resins. This approach can eliminate the effect of human factors, thereby making it possible to assess and compare the inherent features of each polished dental material.

[96] Boccaccio A., Lamberti L., Pappalettere C., Cozzani M., Siciliani G., Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: A finite element study, American Journal of Orthodontics and Dentofacial Orthopedics, 134(2), 260-269, (2008). Abstract
X

Abstract: Introduction: In this study, we aimed to analyze the displacement field and the level of stability for a human mandible that had symphyseal distraction osteogenesis. The mandible was fitted with various orthodontic devices: tooth borne, bone borne, and hybrid. Three-dimensional nonlinear finite element analyses were performed to study differences between the nominal aperture of the device and the actual mandibular distraction. Furthermore, displacement fields of the mandibular arch evaluated with and without mastication forces were compared to determine the level of stability of each appliance. Methods: Computed tomography scan images of the mandible were processed to create the finite element model, which was completed by modeling the distraction device. Three cases were considered: the distraction device attached to the first molar and the first premolar (tooth borne), to the canine and basal bones (hybrid), or only to the basal bone (bone borne). The nominal aperture of each device was 2 mm. Mandibular displacements in the mastication phase were analyzed in the case of unilateral occlusion on the second premolar. Results and Conclusions: Tooth-borne and hybrid devices allow orthodontists to better control the effective displacement transferred to the mandible by the distractor. Displacements of the mandibular arch were closer to the nominal aperture of the distractor than in the case of the bone-borne device. Hybrid devices were more stable under functional loads. However, parasitic rotations of the mandibular arms caused by mastication might counteract the benefits of distraction. © 2008 American Association of Orthodontists.

[97] Boccaccio A., Lamberti L., Pappalettere C., Quagliareella L., Accuracy of finite element predictions on bone/implant interface contact pressures for models reconstructed from CT scans, Journal of Mechanics in Medicine and Biology, 8(2), 161-182, (2008). Abstract
X

Abstract: Finite element (FE) simulations can be utilized to predict contact pressures at the bone/implant interface as well as to identify the position and shape of the contact region. However, the accuracy and reliability of FE models of the bone/implant interface reconstructed from tomographic images may be affected by a number of factors such as the presence of image artifacts, the magnitude of geometric errors made in the reconstruction process, the type of boundary and loading conditions hypothesized in the model, the nonlinear solver utilized for computing the contact pressure distribution, and the element type. This paper attempts to estimate the global effect of the aforementioned factors. For this purpose, a cylindrical contact problem - pin/muff - portraying a simplified model of the bone/implant interface is considered. The accuracy of numerical predictions is estimated by comparing contact pressures predicted by an FE model reconstructed from computed tomography (CT) scan images and by an "ideal", experimentally validated FE model. Two different couplings, i.e. chromium-cobalt alloy and titanium implants, are considered. In the former case, image artifacts complicate the reconstruction process of model geometry and lead to less accurate predictions on contact pressure distribution; conversely, the limited streaking effects occurring in the titanium pin case allow us to precisely reconstruct coupling geometry. Finally, a rather clear correlation between errors on contact pressure and geometric errors made in the reconstruction process is found only for the titanium pin. © 2008 World Scientific Publishing Company.

Keywords: Bone/implant interface | CT scans | Cylindrical contact | Finite element analysis | Image artifacts | Model reconstruction

[98] Boccaccio A., Lamberti L., Pappalettere C., Effects of aging on the latency period in mandibular distraction osteogenesis: A computational mechanobiological analysis, Journal of Mechanics in Medicine and Biology, 8(2), 203-225, (2008). Abstract
X

Abstract: Mandibular symphyseal distraction osteogenesis is a clinical procedure utilized in orthodontics for solving problems of dental overcrowding on the mandibular arch. A critical issue is to evaluate the optimal duration of the latency period between the osteotomy and the first aperture of distraction device. In fact, the latency period should change with the patient's age. To this end, a computational mechanobiological model has been developed in order to find optimal durations of latency period for young, adult, and elder patients. The model is implemented in a finite element framework simulating the process of tissue differentiation in the bone callus formed after osteotomy. The biophysical stimulus regulating the tissue differentiation process is hypothesized to be a function of the octahedral shear strain and interstitial fluid flow velocity. The resulting spatial distribution of stiffness properties in the callus region is analyzed in order to assess the risk of premature bone union of osteotomy edges. The three-dimensional (3D) finite element model (FEM) of human mandible is reconstructed from computed tomography (CT) scans and also includes a tooth-borne device. Under unilateral occlusion, the mandible is submitted to full mastication loading or to mastication forces reduced by 70%. The results show that optimal durations of the latency period for preventing premature bone union are about 5-6 days for the young patient, 7-8 days for the adult patient, and 9-10 days for the elder patient. These durations seem rather insensitive to the magnitude of mastication forces. Finally, distraction force values predicted by the present mechanobiological model are in good agreement with data reported in the literature. © 2008 World Scientific Publishing Company.

Keywords: Aging | Finite element analysis | Mandibular distraction osteogenesis

[99] Boccaccio A., Prendergast P.J., Pappalettere C., Kelly D.J., Tissue differentiation and bone regeneration in an osteotomized mandible: A computational analysis of the latency period, Medical and Biological Engineering and Computing, 46(3), 283-298, (2008). Abstract
X

Abstract: Mandibular symphyseal distraction osteogenesis is a common clinical procedure to modify the geometrical shape of the mandible for correcting problems of dental overcrowding and arch shrinkage. In spite of consolidated clinical use, questions remain concerning the optimal latency period and the influence of mastication loading on osteogenesis within the callus prior to the first distraction of the mandible. This work utilized a mechano-regulation model to assess bone regeneration within the callus of an osteotomized mandible. A 3D model of the mandible was reconstructed from CT scan data and meshed using poroelastic finite elements (FE). The stimulus regulating tissue differentiation within the callus was hypothesized to be a function of the strain and fluid flow computed by the FE model. This model was then used to analyse tissue differentiation during a 15-day latency period, defined as the time between the day of the osteotomy and the day when the first distraction is given to the device. The following predictions are made: (1) the mastication forces generated during the latency period support osteogenesis in certain regions of the callus, and that during the latency period the percentage of progenitor cells differentiating into osteoblasts increases; (2) reducing the mastication load by 70% during the latency period increases the number of progenitor cells differentiating into osteoblasts; (3) the stiffness of new tissue increases at a slower rate on the side of bone callus next to the occlusion of the mandibular ramus which could cause asymmetries in the bone tissue formation with respect to the middle sagittal plane. Although the model predicts that the mastication loading generates such asymmetries, their effects on the spatial distribution of callus mechanical properties are insignificant for typical latency periods used clinically. It is also predicted that a latency period of longer than a week will increase the risk of premature bone union across the callus. © International Federation for Medical and Biological Engineering 2007.

Keywords: Finite element modelling | Mandibular distraction osteogenesis | Mechanobiology | Orthodontic devices | Tissue differentiation

[100] Sciammarella C.A., Lamberti L., Boccaccio A., Cosola E., High precision contouring. Recent advances, Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2007, 1, 399-408, (2007). Abstract
X

Abstract: Shadow (projection moiré) is the oldest form of application of moiré method (1929); papers published in the literature on this subject in the order of hundreds. The multiplicity of papers is a consequence of diverse simplifications used to translate captured images information into the geometry of observed surfaces. Different authors have made different approximations while developing models for moiré contouring fringe data analysis, many times without a thorough evaluation of the adopted simplifications. This make it difficult to evaluate performance of different devices built to measure 3-D shape based on moiré technology. To clarify some of the basic requirements for a successful model, in the 2006 Spring meeting of SEM, a paper was presented proposing a model of moiré contouring based on projective geometry and differential geometry requirements. An application to the determination of the displacements of a large rectangular plate illustrated the proposed model. In this paper the basic ideas presented in the 2006 paper are applied to the contouring of a sample utilized to evaluate the accuracy of laser generated geometrical shapes through the process of laser stereo-lithography. The basic aspects of the process followed to obtain the surface contour are presented and discussed. Comparisons between the optically obtained result, the initial CAD design and a high precision tactile machine are made. These results provide a basis for the evaluation of the obtained result and the feasibility of high precision contouring using moiré contouring techniques. The obtained result show that high precision contouring can be achieved if one applies the correct model that satisfies the basic requirements of projective geometry, differential geometry and the physical optics.

[101] Boccaccio A., Pappalettere C., Kelly D.J., The influence of expansion rates on mandibular distraction osteogenesis: A computational analysis, Annals of Biomedical Engineering, 35(11), 1940-1960, (2007). Abstract
X

Abstract: Mandibular distraction osteogenesis is a clinical procedure used for modifying the mandibular geometry when problems of dental overcrowding and arch shrinkage occur. The objective of this study is to use a computational model of tissue differentiation to examine the influence of the rate of distraction on bone re-growth within the fracture callus of a human mandible submitted to symphyseal distraction osteogenesis. A 3D model of the mandible is reconstructed from CT scan data and meshed into finite elements. Two different mastication loadings have been investigated: a 'full' mastication load and a 'reduced' mastication load where the action of each muscle was reduced by 70%. Four different distraction rates were analyzed: 0.6, 1.2, 2, and 3 mm/day, allowing a total displacement of 6 mm. In the early stages of the distraction process it is predicted that there is a decrease in the amount of bone tissue forming within the center of the fracture gap for all distraction rates. After the initial phases of expansion, the bone tissue within the callus increases for the slower rate of distraction or continues to decrease at the faster rates of distraction. At the end of the simulated maturation period, 47% of the distracted callus was predicted to consist of bone tissue for a distraction rate of 0.6 mm/day, decreasing to 22% for a distraction rate of 3 mm/day. Significantly higher amounts of bone formation were predicted for all distraction rates for the case of reduced mastication loading. Disparities between the model predictions and what is observed in vivo were found. For instance, during the latency period, the distraction period and beyond, the model is predicting larger than expected amounts of cartilage tissue formation within the callus. This and other limitations of the proposed model are discussed and possible specific explanations for these disparities are provided in the paper. The model predicts a distraction rate of around 1.2 mm/day to be optimal as higher rates produce less bone tissue while the risk of a premature bone union is greater at slower rates of distraction because in the latter stages of the distraction process bone tissue is predicted to form between the left and right side of the bone callus. © 2007 Biomedical Engineering Society.

Keywords: Finite element analysis | Mandibular distraction osteogenesis | Mechanobiology | Osteotomized human mandible | Tissue differentiation

[102] Boccaccio A., Lamberti L., Pappalettere C., Carano A., Cozzani M., Mechanical behavior of an osteotomized mandible with distraction orthodontic devices, Journal of Biomechanics, 39(15), 2907-2918, (2006). Abstract
X

Abstract: This work analyzes the mechanical behavior of a human mandible when distraction orthodontic devices are used for correcting problems of dental overcrowding and/or arch shrinkage. The mandible 3D model is reconstructed from CT scan data and meshed into finite elements. The distractor is also modeled. FEM analysis included geometric non-linearity. Displacement field of healthy and osteotomized mandibles are compared. Progressive expansion of the distractor and effects of mastication are also analyzed. Finally, we compare two distraction protocols PROT1 and PROT2 where device is, respectively, expanded by 0.6 or 1.2 mm/day. The global displacement is 6 mm according to clinical recommendations. It came out that mastication forces generate displacements compatible with bone remodeling. However, parasitic rotations of the mandible arms due to mastication may counteract arch expansion induced by the device. Stress concentrations occurred where the device is fixed: stress peaks stay however below yield limit. Finally, PROT2 reduced by about 10% stresses in mandible and reproduces better than PROT1 the displacement field imposed by the device. © 2005 Elsevier Ltd. All rights reserved.

Keywords: 3D FEM analysis | Displacement protocols | Distraction osteogenesis | Orthodontic devices | Osteotomized mandible

[103] Quagliarella L., Boccaccio A., Lamberti L., Sasanelli N., Biomechanical effects of prosthesis neck geometries to contrast limb lengthening after hip replacement, Journal of Applied Biomaterials and Biomechanics, 4(1), 45-54, (2006). Abstract
X

Abstract: Hip prostheses should meet the anatomical and physiological characteristics of patients; this is the rationale for designing modular implants of different sizes. To optimize implant geometry, it is necessary to consider, not only the prosthesis component design, but also the final configuration of the implanted leg. This means the necessity to consider the specific morphological and functional condition of "that" patient and not only of "that" hip to restore, at best, limb functions. Variations in the length of the implanted limb are frequent; therefore, the variations in the three geometrical features of the hip prosthesis neck, which can affect the restoration of the anatomical symmetry of the limbs, were investigated: (i) neck lengths (Ln), between 50.5 and 64.5 mm; (ii) cervico-diaphyseal (CD) angle (γ), between 135 and 125° and; (iii) anteversion (AV) angle (β), between 0 and 15°. Adopting a three-dimensional (3D) simplified biomechanical model, the resultant load acting on the hip was estimated for each different design solution; corresponding stress distributions and contact pressures at the interface between the prosthesis head and the ultra high molecular weight polyethylene (UHMWPE) layer were evaluated by 3D finite element (FE) analyses and using the Strozzi approach. The following values have been assumed as physiological values: γ = γp = 125°, β = βp = 15° and Ln = 57 mm; it was found that to contrast limb lengthening, if the CD angle varies from 135-125° (with neck length Ln = 64.5 mm and AV = 0°), the joint resultant load decreases by 8.8% (7.2% if AV = 15°); the contact pressure decreases by 5.8%, (5% if AV = 15°); the bending moment in the stem neck increases by 10.9% (13.8% if AV = 15°) and the torque increases by 1% (12.8% if AV = 15°). © Società Italiana Biomateriali.

Keywords: Anteversion angle | Cervical-diaphyseal angle | FE | Hip prosthesis | Limb lengthening | Prosthesis neck geometry | UHMWPE wear

[104] Boccaccio A., Lamberti L., Quarta V., Numerical and experimental evaluation of stresses in a human mandible, Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 713-720, (2005). Abstract
X

Abstract: In the last two decades, medical and engineering specialists developed a more and more close cooperation. Dental and orthodontic sciences represent an excellent example of this synergic view. In particular, detailed information on stress distribution in the implant region may greatly help clinical experts to reduce risk of failures thus preventing the need for re-implantations. Of course, modeling and analysis of biological/medical structures is often based on subjective information that may considerably change from patient to patient. In view of this, the present research aims to set up a framework for building reliable analysis models from geometrical information gathered with medical imaging tools. In order to check the feasibility of the procedure, we considered the case of a human mandible for which a virtual model is reconstructed from Computerized Tomography. This case is very indicative because of the very high complexity of the anatomical district analyzed. The mandible model thus reconstructed has been studied with FEM analyses simulating four different scenarios that may occur during mastication. The experimental part of this research is the processing of CT scan files which actually requires a very accurate study and special cares. The experimental work then prosecuted with the construction of the a stereolithographic model that can be utilized for photoelastic investigations.

Tieniti in contatto con l'Associazione ADM

Per qualunque informazione non esitare a contattare la Segreteria ADM tramite le modalità previste nella sezione Contatti

Soci ADM 207

N° pubblicazioni censite 10638