

October 17th–18th, 2022

PRODUCTION PROCESS OPTIMIZATION AND CHARACTERIZATION OF 3D PRINTED METAL PRODUCTS

MEng Francesco Cantaboni

Department of Mechanical Engineering, University of Brescia Via Branze 38, 25123 Brescia, Italia.

Plesso Didattico Morgagni, Viale Morgagni, 44-48, 50134 Firenze

ADDITIVE 4 BIOMEDICAI

CoCo

Introduction

- Recent advances in AM technology have also provided opportunities for fabricating biomedical parts with complex geometries that can be easily personalized.
- A kind of lattice structure was introduced into the implant design, and L-PBF and EBM processes were used to build the part.

ADDITIVE 4 BIOMEDICAL

Production process optimization and characterization of 3D printed metal products

⁴ Methodology

- 5 Goals
 - Mechanical characterization Compression test
 - Study of Co-Cr-Mo alloy
 - Radial orientation analysis
 - As-Built vs Heat treated samples
 - Biomedical applications

Research Activity

AB alloy

CoCr	Со	Cr	Мо	Ni	Fe	С	Si	Mn
Wt min (%)	Bal	28.00	5.00	0.00	0.00	0.00	0.00	0.00
Wt max (%)		30.00	6.00	0.10	0.50	0.02	1.00	1.00

Unit cell design	Samples building relation to the b	orientations in uilding plate						
	Samı	Samples z y 0° 90°			HT			
	y 0°				*Vacuum heat treatment			
FCC DM	x	Build platform	-	Heated	From room temperature to 1200°			
				Heating rate	13°C/min			
z	↓			Soaked	1200°C for 2h			
DG Radially oriented		Partial pressure we temperature reaction of the second sec			as applied as the ned 650°C and cuum cooling was			
CoCr samples H = 24,0mm D = 30,0mm				*Heat Treatment on Co-Cr-Mo samples performed by the company TAV Vacuum Furnaces (Caravaggio (BG),				

⁶ Microstructural analysis

Research Activity

Micrographs of the longitudinal (L) and transverse (T) cross-section of the studied specimens are studied to evaluate the dimensions of melt pools and the microstructure characteristic of Co-Cr-Mo alloy.

⁷ Mechanical characterization compression test

Research Activity

Instron 8501 – servo hydraulic machine					
Load cell 500 kN					
Crosshead velocity	2 mm/min				
the displacement was measured using the crosshead movement					

Load-displacement curves were generated from Instron output data.

CoC

⁸ Mechanical characterization results

⁹ Methodology

¹⁰ Goals

Research Activity

- Mechanical characterization Compression and tensile test
- Study of **Ti-6AI-4V** alloy
- Lattice with and without skin
- Biomedical applications

Ti6Al4V	Ti	Al	V	Fe	С	0	Ν	Н
Wt min (%)	Bal	5.50	3.50	0.00	0.00	0.00	0.00	0.00
Wt max (%)		6.75	4.50	0.30	0.08	0.20	0.05	0.02

Ti-6Al-4V chemical composition

Unit cell design

FCC+CP

FCC

BCC

Ti-6Al-4V

Research Activity

¹² Design and Fabbrication

Research Activity

Dimensions

BCC unit cell was used

CoCo AM

ADDITIVE 4 BIOMEDICAL

Research Activity

Ti-6Al-4V

Ζ

Х

MICROSTRUTTURA - XY

Mechanical characterization 14 Compression and tensile test

A few examples of Compressive samples

Instron 8501 Load 250 kN v = 2 mm/min

Ti-6AI-4V

Vertical samples

45° samples

Samples without skin

ADDITIVE 4 BIOMEDICAL

¹⁵ Mechanical characterization Results

Ti-6Al-4V

¹⁶ Mechanical characterization Results

Ti-6Al-4V

¹⁷ Mechanical characterization Results

Research Activity

Ti-6Al-4V

CoCo

FEM Analysis by DEFORM 19

TECNOLOGIE D'AVANGUARDIA

Research Activity

Sollecitazione - Y (MPa

94.5 27.7

-39.2

Min

Sollecitazione - Z (MPa

75.2

41.9

8 62

-24.7

-58 0

-91.3

Min -125 Max 142

▲ E585 Min = -124.618 -125

The goal of this work is to obtain:

- macro simulation of 3D printing of complex geometry
- **Prediction** of the distribution of stress, temperature, to optimize process parameters before producing samples or components. SAMPLES ATTACHED AND CUTTED FROM THE

²⁰ Ongoing research

In conclusion:

• Proceed with new experimental tests.

- Metallurgical characterization (pores, microstructure and hardness investigation), especially into the interface between solid and lattice structure.
- Development of a customized prosthesis implemented with optimal mechanical and microstructural characteristics.
- Further study of the mechanical behavior of lattice structure with and without external shell

COL

Thank you for your attention!

MEng Francesco Cantaboni

Department of Mechanical and Industrial Engineering, University of Brescia Via Branze 38, 25123 Brescia, Italia.

https://www.linkedin.com/in/francescocantaboni/

ADDITIVE 4 BIOMEDICA

Dept. Of Mechanical and Industrial Engineering | University of Brescia | MEng. Francesco Cantaboni

21