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Abstract 

In industrial design processes, engineers and designers always need to perform 
compromises between many different design objectives. In particular, trades-off between 
nominal performance and design sensitivity have received increasing interests in the past few 
years. Robust design optimization methods focus on such conflicting issues in design 
engineering. Specific functions dedicated to the RDO framework, expressing the admissible 
compromises expected between nominal performance and design sensitivity have not yet 
stimulated much developments. The main purpose of this research work aims to develop a 
trade-off function to select among a set of alternatives, solutions which achieve rational 
compromises between design objectives. The design optimization model, composed by a 
model of the system behavior and a knowledge-based model, is formulated through 
observation, interpretation and aggregation functions. Such a procedure enables first to 
model preferences, provides a quality indicator for design solutions and finally turns the initial 
multiobjective optimization problem into a mono-objective problem which is solved 
stochastically by genetic algorithm. As an illustration of the trade-off approach, the method is 
used to achieve robust solutions for a side-impact crashworthiness problem.  

1 Introduction 

In the early stage of the design process, difficulties 
may arise from a limited knowledge of the system, from 
the high level of uncertainties and incomplete data due to 
fluctuating operating conditions, modeling precision, 
material properties or manufacturing tolerances for 
example [1]. Two conflicting issues are generally of 
interest in uncertain design problems: the optimization of 
the overall performance and then the minimization of the 
design variability also known as robustness. Robust 
design optimization (RDO) methods mainly focus on 
analyzing the trade-off between the improvement of the 
nominal performance and the reduction the design 
sensitivity. In quality engineering, G. Taguchy [2,3] 
attempts to minimize the effects of uncertainties on 
design sensitivity and performance without eliminating the 
source of variation by suggesting a “signal to noise” ratio 
to quantify the robustness of a design solution. However 
this method suffers from the impossibility to control 
compromises realized between levels of performance and 
sensitivity. Indeed according to his preferences, a 
designer needs to properly formulate such trades-off in 
order to achieve robust solutions. 

Therefore, for a complete automation of trade-studies 
in robust design problem, this research work about RDO 
methodologies, integrates not only the robustness as 
defined by G. Taguchi, but also the robustness of the 
designer choice based on the expression of preferences 
and admissible compromises. It is a topical issue in 
design processes, since decisions must lead to the 
selection of a unique design alternative which will be 
manufactured and put on the market. Taking robust 
decisions is therefore fundamental by allowing designers 

to make the best choices at the earliest stages of the 
design process, even if it is constrained by deep 
uncertainties. Benefits come from decreasing the number 
of iterations between preliminary and detailed phases of 
the design process and increasing the level of reliability 
and speed of convergence towards the most preferred 
solution. 

An efficient way to deal with RDO problems consists in 
tackling them as a multiobjective optimization problem [4]. 
Difficulties arise from comparisons between properties. 
Typically, an interpretation step is required to turn the 
numerical values of some performance criteria into levels 
of acceptability ranging from zero to one. Aggregation 
strategies are then used to build a single indicator 
reflecting the overall satisfaction level of acceptability of 
the design. Research works have focused in designing 
interpretation function such as utility or desirability 
functions, and aggregations function [5,6] to aggregate 
some objectives into a global score. However the 
development of a trade-off function dedicated to tackle 
RDO problems in engineering, haven’t yet stimulated 
much interests. Indeed this problem requires a particular 
class of function to model the perception of the designer 
when the robustness is expected. For example, a design 
solution is expected first to satisfy some criteria of 
performance and then to be invariant to uncertainty. 
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Fig. 1 Overview of the optimization model 

The main purpose of this research work aims to 
develop a trade-off function to filter the Pareto front and 
achieve rational compromises between design objectives. 
A whole design optimization model composed by a model 
of the system behavior and a knowledge-based model 
involving interpretation and aggregation functions, is 
suggested to model preferences and provide a quality 
indicator for design solutions. The initial multiobjective 
optimization (MO) problem is thus turned into a mono-
objective problem which is solved stochastically by 
developing a classical genetic algorithm. An overview of 
the developed methodology is presented in Fig. 1. As an 
illustration of the trade-off approach, the method is used 
to achieve robust solutions for a side-impact 
crashworthiness problem. 

2 Observation, Interpretation and 
Aggregation (OIA) 

In engineering design, technical solutions do not 
always meet the requirements and satisfy in unequal 
ways each design objective. The difficulty arises with the 
balancing act between the different levels of design 
objectives fulfillment. Therefore designers use their own 
judgment to express preferences on the design objectives 
and perform trade studies on the resulting design to 
converge toward the most preferred alternative. 

Behaviour model

Knowledge-based model

1 - Observation μ(x)

2 - Interpretation  δ(y)

3 - Aggregation  ζ(z)

DOI = φ(x) =ζ○δ○μ(x)
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Fig. 2 Formulation of preferences with OIA 

 As illustrated in Fig. 2, such a process requires both 
objective and subjective knowledge. It is a three-step 
procedure which consists in first observing some relevant 
characteristic of the system, then interpreting their values 
into levels of acceptability according to constraints or 

requirement, and finally aggregating these interpreted 
values into a single global indicator. The designer’s 
actions composed by observation, interpretation and 
aggregation (OIA) enable them to express preferences 
from a set of design variables. Each preference is 
intrinsically linked to a numerical value which conveys the 
level of fulfillment achieved by the chosen alternative. This 
value is the preference function. It brings together three 
kinds of functions which refer respectively to observation, 
interpretation and aggregation: 

   φ ζ δ μ  (1) 

where φ designates the preference function, μ is the 
observation function, δ is the interpretation function and ζ 
is the aggregation function. The OIA procedure has been 
already applied in the optimization of a two-stage flash 
evaporator [5,6]. 

2.1 Observation 

Observation is the first thing that enables individuals to 
make judgment and so, to operate choices. During the 
design process, decisions about the values of design 
variables are often based on the observation of some 
relevant performance criteria of the system such as mass, 
efficiency, resources consumption, environmental impact 
or cost. The observation model is the behavior model of 
the system, combining relations and variables from 
physical, manufacturing, environmental and economical 
models. The observation model can be express as 
follows, 

   μ ,y x x  (2) 

where μ is the observation model, y is the set of 
observation variables computed from a set of design 
variables x taken in the domain Ω. 

2.2  Interpretation 

The selection of an optimal design depends first on the 
satisfaction of constraints by the performance criteria, and 
then, on the overall level of performance reached by this 
solution. Thus interpretation aims to provide a same scale 
of value for criteria comparison according to their ability to 
satisfy constraints. Constraints are turned into objectives 
by mapping their value onto a function in the domain [0;1]. 
Observation variable values are thus associated to a level 
of acceptability. A level of acceptability close to zero 
usually leads to a non acceptable design alternative. A 
value closes to one means that the constraint has been 
completely satisfied. The alternative can be thus 
considered as acceptable. Moreover it becomes thus 
possible to provide the design problem formulation with 
flexibility by specifying how strict the constraints are. This 
whole knowledge-based model built on the designer 
judgment and experience is expressed through 
interpretation functions which are defined as a vectorial 
function of observation variables by: 

     δ  ,   with 0,1z y z  (3) 

where δ represents interpretation functions and z is the 

set of interpreted variables in [0;1] derived from the set of 
observation variables y. In this paper we use a widely 

adopted class of interpretation functions based on the 
concept of desirability. In [7], Harrington proposed a 
multicriteria optimization scheme for industrial quality 
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management based on what he called desirability 
functions. These functions are represented in Tab. 1. 

One-sided (Max. form) 
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



 

Tab. 1 Harrington desirability functions 

2.3 Aggregation 

As a general rule every observation variable and 
hence, every interpretation variable, is related to one or 
more design objectives. While a constraint is a functional 
or technical requirement that the system must satisfy, a 
design objective can be defined as a general target or a 
task-specific constraint that the system should meet. 
Reducing manufacturing costs or environmental impacts 
are both usual relevant objectives in engineering design. 
Aggregation processes consist in first identifying 
performance criteria related to a same design objective, 
and then, combining their different levels of acceptability, 
or desirability, into one single indicator. This indicator, 
called Design Objective Index and denoted DOI in this 
paper, quantifies the overall desirability level reached by a 
design alternative in regard to one particular design 
objective. We express aggregation functions as: 

    DOI  ,   with DOI 0;1  z  (4) 

The design objective index is derived from the 
desirability index introduced by Derringer in [8]. He 
suggested to aggregate desirability functions according to 
a weighted geometric mean to tackle multicriteria 
optimization problems. Later, Kim and Lin [9] modified this 
approach by computing the desirability index as the 
minimum of the desirability values. These two 
aggregation formulations are designated respectively as 
aggressive and conservative design strategy in the 
Method of Imprecision (MoI) developed by Anthonsson in 
[10,11]. Conservative design strategy is used while trade 
off aims to improve the design by increasing the 
desirability level of the worst aspect and decreasing the 
overall desirability level. In this case, the aggregation 
function is the minimum function: 

     1 nζ min. z , ,zz  (5) 

where z is a set of n interpreted variables. Conversely, 

aggressive design strategy consists in increasing the 
overall level of desirability by slightly reduced the 
compensatory effects on the lowest property. Sometimes 
the resulting design is strongly hampered by a single 
criterion which is much more difficult to satisfy than all 
others. Therefore relaxing this constraint enables an 
improvement of the overall design. This strategy is 
expressed as a geometric mean aggregation: 

   i

n
w

i

i 1

z


 z  (6) 

Each component of the aggregation can be provided 
with a numerical weight wi which reflects a partial order of 
importance between preferences. Weight assignments in 
aggregation processes are not tackled in this paper and 
therefore, all weights are taken as equal, i.e. we suppose 
that all components of the aggregation are equally 
preferred. Conservative and aggressive aggregation 
strategies can be applied successively to combine many 
design objectives into a single global main objective. 

3 Development of a trade-off function 

In the continuity of the OIA procedure, we have 
developed a new objective function, specific to robust 
design problems, i.e. while designers performed trade 
studies between first improving the overall level of 
nominal performance and then reducing the design 
sensitivity. The awareness of such compromises is a main 
source of concern in design engineering since they enable 
to make robust decisions and then, to converge quickly 
towards the most preferred alternatives. 

Obervation, Interpretation, 

Aggregation

Design 
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Obervation, Interpretation, 

Aggregation

Uncertainties

Improve nominal 
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Reduce design 
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Trade-off
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Fig. 3 Principle of the trade-off approach 

The developed approach is exposed in Fig. 3. We use 
the OIA procedure to formulate two design objectives 
related to robustness. While the first one aims to improve 
the nominal performances of the system, the other one 
concerns the minimization of the sensitivity of the design 
to perturbations. Then, instead of performing another 
aggregation as suggested in part 2.3, a trade-off function 
is thus introduced to filter a set of solutions according to 
their ability to improve or degrade compromises linked to 
robust design. 

3.1 Trade-off function and trade-off indicator 

The trade-off function has been designed to provide a 
suitable measurement for the relative sensitivity of a 
choice from a set of alternatives, by quantifying the 
improvement or degradation in the compromise between 
two preferences when one of both is prevailing. In a 
robust deign framework, it is often rational to first achieve 
a satisfying level of performance and then to reduce the 
sensitivity of the solution. Achieve a good level of nominal 
performance and reduce variability can be considered as 
two design objectives in this case. The trade-off function 
is a three parts function defined as: 
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    

      



    


     


2

n n n

n n n

n

0,1 1,1
:

(u,v) A 1 u 1 k v B

with t 1 u 1 k v

1  if u k  and  t 0  then   A 1/ 1 k  ,   B 0

2  if u k  and  t 0  then   A 1 ,   B 0

3  if u k  and  t 0  then   A u / k ,   B u k / k

 

where (u,v) are two normalized preferences such as u is 
dominant compared to v. The preference u refers to the 
objective of improving the nominal performance whereas 
the preference v designates the objective of reducing the 
variability of the design. Parameters k and n are 
specification parameters of the trade-off function. These 
parameters are related to an iso trade-off of reference 
given by τ (u, v) = 0. 

 
Fig. 4 Trade-off function specified with k = 0.5 and n = 3 

The iso trade-off function which is further detailed in 
part 3.2, represents all the alternatives considered as 
equally preferred by the decision-maker. In Fig. 4, a 
trade-off function specified with k=0.5 and n=3 has been 
represented. The trade-off function ranks a set of 
solutions alternatives according to their ability to 
constitute a better, equivalent or worse compromise than 
the trade-off initially defined by the iso trade-off function. 
Derived from the desirability index, we introduce here the 
trade-off indicator TI defined as: 

  TI u,v   (7) 

From a couple of preferences, the trade-off function 
thus provides a relative measure expressing the 
improvement, or the degradation in the compromise 
between two candidate solutions. Therefore such an 
indicator traduces a partial order relation and is 
associated to a particular set of solutions. Considering a 
set of design alternatives evaluated on two preferences, a 
positive trade-off indicator indicates an improvement in 
the compromise, and so a more relevant choice, whereas 
a negative trade-off indicator traduces a degradation and 
so a worst choice. The iso trade-off function is associated 
to a trade-off indicator equal to zero since it represents 
equivalent choices and therefore a conservation of the 
trade-off. 

 
Fig. 5 Iso trade-off curves 

In Fig. 5 alternatives A and B express a compensatory 
situation where no rational decision can be taken. The first 
example (a) deals with trade-off improvement. Alternative 
C is equivalent to alternative A in regard to preference v 
but, it is also better in regard to preference u. Compared 
to alternative B, alternative C is equivalent in regard to 
preference u but, better in regard to preference v. 
Therefore alternative C constitutes a better choice than 
both A and B. The second example (b) deals with the 
conservation of the trade-off. According to the value 
obtained for each preference, it is actually not possible for 
the decision-makers to operate a rational choice between 
alternatives A, B and D, which can be considered as 
equivalent. The last example (c) refers to trade-off 
degradation. As the alternative E is less preferred than 
both alternatives A and B for the two preferences u and v, 
then it constitutes the worst compromise. The partial 
orders of relations associated to these examples are 
reported in Tab. 2. 

Trade-off cases Partial order relations 

a –Improvement  A C A C

B C B C

u u , v v
C A,B

u u , v v










 

b – Conservation  A D A D

B D B D

u u , v v
D A,B

u u , v v

 
 

 
 

b – Degradation  A E A E

B E B E

u u , v v
E A,B

u u , v v










 

Tab. 2 Trade-off and partial order relations 

These particular properties of the trade-off function 
enable to provide a consistent ranking of the possible 
alternatives, even in borderline cases while all alternatives 
achieve the same level of nominal performance, or the 
same level of design sensitivity or equivalent levels. 

3.2 Iso trade-off function 

The general expression of the trade-off function given 
in part 3.1, is mainly derived from the definition of the iso 
trade-off function. This function is derived from preference 
modeling in decision theory. Preferences and their logical 
properties refer to a choice between some alternatives 
and the possibility to rank these alternatives according to 
degrees of satisfaction, utilities, desirabilities or other 
evaluation criteria. The iso trade-off function modeled an 
indifference relation which can also been regarded as an 
equivalence relation. Such a function represents all the 
alternatives considered as equally preferred by the 
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decision-maker. Let’s consider two preferences (u,v) as 
introduced previously. Typically, the ideal decision made 
from alternatives concerns the one which achieves the 
best preferences for both u and v. Such cases are rare in 
real decision problems. Designers often face to 
compensatory situations and have to operate selections 
among a set of design solutions. According to the trade-
off approach, if preference u is required to keep a minimal 
value, then the compromises between u and v can be 
expressed as the maximal degradation of u allowed by 
the designer to improve the preference v. The iso trade-
off function is based on this statement and considers 
every solution that verifies the following equation as 
equally preferred: 

 

 

 

n n n

*

1 u v 1 k 0

u k, k 0,1
with 

n


   

  




 (8) 

where k and n are the two specification parameters 
required to adjust the shape of the function of the decision 
problem. Parameter k gives the minimal admissible value 
reached by preference u in order to increase the value of 
preference v from zero to one. Parameter n is used to 
refine the expression of the compromise expected 
between the two preferences. Increasing the value of n 
makes it possible to be more and more restrictive on the 
minimal admissible value taken by preference u. Through 
this formulation we suggest that a design solution 
satisfying the objective of performance, i.e. such as u=1, 
but not robust (v=0) is equivalent to a solution less 
performing (u=k) but much more robust (v=1). 

4 Application: trades-off for vehicle 
side-impact crashworthiness 

As an illustration of this trade-off approach, the method 
is used to achieve robust design solutions for the car 
side-impact crashworthiness problem already discussed 
in [12,13,14] and presented on Fig. 6. This multiobjective 
optimization problem aims to design a vehicle structure 
under uncertainties, which not only satisfies a number of 
safety conditions imposed by the crashworthiness 
regulations, but also minimizes the overall weight of the 
car. 

B-pillar 

inner

Floor side 

inner

Door belt line

Roof rail

Door 

beam

Cross 

member

 
Fig. 6 Vehiccle side impact model adpated from [13] 

4.1 Description of the vehicle side-impact 
crashworthiness problem 

Initially the objective of the side-impact 
crashworthiness problem is to reduce the vehicle weight 

while satisfying safety criteria, by adjusting the values of 
nine design variables presented in Tab. 3 and illustrated 
on Fig. 6. Design variables from x1 and x7 refer to the 
thickness of the different parts of the vehicle structure 
namely the B-pillar inner, the B-pillar reinforce, the floor 
side inner, the cross member, the door beam, the door 
belt line and the roof rail. These variables are supposed to 
be continuous. Design variables x8 and x9 refer 
respectively to the material properties (medium-strength 
steel and high-strength steel) of the B-pillar inner and floor 
side inner. They are considered as discrete variables. In 
addition to this nine design variables there are two other 
variables which represent the barrier hitting height x10 and 
the barrier hitting position x11. In this study we take these 
two last variables equal to zero. Furthermore variables 
from x1 to x7 are supposed to have a normal distribution 
with a standard deviation equal to 0.03. 

D. variables Type Domain Ω Dist. Std. 

x1 continuous [0.5 ; 1.5]  0.03 

x2 continuous [0.5 ; 1.5]  0.03 

x3 continuous [0.5 ; 1.5]  0.03 

x4 continuous [0.5 ; 1.5]  0.03 

x5 continuous [0.5 ; 1.5]  0.03 

x6 continuous [0.5 ; 1.5]  0.03 

x7 continuous [0.5 ; 1.5]  0.03 

x8 discrete {0.192 ; 0.345} - - 

x9 discrete {0.192 ; 0.345} - - 

Tab. 3 Design variables of the vehicle side-impact 
crashworthiness problem 

The response variables of the side-impact 
crashworthiness model are the observation variables of 
the OIA formulation. They concern the overall weight of 
the car (y1) and the safety performances involving the 
occupant and structural damages. These safety criteria 
concern the abdomen load (y2); the chest injury caused by 
the deformation of soft tissues measured at three different 
places on the torso (viscous criterion; y3 - y4 - y5); the rib 
deflections measured at the upper, middle and lower 
chest area (y6 - y7 - y8) and the possible tear in the 
cartilage connecting the right and left pubic bone (public 
symphisis force, y9). The behavior of the vehicle structure 
includes the velocity of the B-pillar at the middle point (y10) 
and the velocity of the front door at the B-pillar (y11). The 
FE simulation models and the statistical analysis 
performed to derive the response surface model are 
described in [13]. The response surfaces giving the weight 
of the vehicle and the safety criteria are expressed as 
follow: 
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These expressions enable to provide the mathematical 
formulation for the initial optimization model P1 of the 
vehicle side-impact crashworthiness: 

1 1

2

3 4 5

6 7 8

9

1

10

1

11

10 11

P : min. y

Sub. to : y 1.0 kN

y ,y ,y 0.32 mm

y ,y ,y 32 mm

y 4.0 kN

y 9.9 mm ms

y 15.7 mm ms

 with x x 0












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 

  x
 

The trade-off optimization problem is mainly derived 
from this formulation. The objective is to reach the best 
compromise between the nominal performance involving 
the minimization of the weight and the respect of safety 
criteria, and the design stability. In this study, the design 
stability is based on the probability that a constraint is 
violated according to safety criteria. 

4.2 Formulation of the optimization problem 
through the OIA procedure 

According to the methodology developed on part 2, the 
initial optimization model P1 of the vehicle side-impact 
crashworthiness is formulated through OIA processes and 
completed by including design stability and trades-off. Fig. 
7 illustrates the whole design model derived from the 
trade-off approach and OIA procedure. Starting from a 
global design objective, the designer can structure the 
design problem by setting actions which refer to 
observation, interpretation and aggregation. The main 
design problem is thus divided into objectives and sub-
objectives which have to be satisfied. Ones can notice 
that the computing process starts by first evaluating the 
observation variables, then the value reached by the 
different objectives and finally the global design objective. 
The main design objective of the modified design problem 
is to achieve design solutions which satisfy trades-off 
between nominal performance and design stability. This 
action is modeled using a trade-off function between two 
preferences related to two design objectives: improve the 
overall level of performance (DOI1) and reduce the 
variability of the design under uncertain data (DO2). The 
design objective linked to performance is defined by the 
fulfillment of two sub-design objectives related 
respectively to the minimization of the vehicle weight and 
the satisfaction of safety conditions. This is modeled using 
a weighted geometric mean aggregation. The optimization 
of the overall weight is directly given by the interpretation 
of the observation variable y1 through an ones-sided 
Harrington desirability function specified with an absolute 
constraint equal to 30 and a soft limit taken at 20. The 
safety objective is obtained by satisfying every safety 
criteria and thus modeled by aggregating binary values (0 
or 1) provided by strict threshold interpretation functions. 
Therefore, through an OIA process, the initial optimization 
model P1 of the vehicle side-impact crashworthiness is 
now formulated as P2 by: 

2 1

10 11

P : max. DOI

Sub. to :  with x x 0  x
 

Such a formulation has turned the multiobjective 
optimization problem into a mono objective problem. 
Constraints and preferences are formulated inside the 
objective function through interpretation and aggregation 
steps, and consequently, they are not explicit in the 
formulation of the optimization problem, but intrinsic to its 
definition. However both formulations P1 and P2 remain 
equivalent and share the same optimal solution presented 
in the following. 
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Fig. 7 Design optimization model of the vehicle side-impact crashworthiness

The design objective linked to the minimization of the 
design stability deals with the probability that constraints 
are satisfied or not by safety criteria, while design 
variables (x1-x7) are randomly disturbed. This action is 
modeled using a weighted geometric mean aggregation 
composed by the interpretation of the constraint violation 
probability p for the observation variable y. The 
interpretation function used is the one-sided Harrington 
desirability function. The hard constraint is set according 
the admissible probability of non-respect of the constraint. 
Finally the modified design optimization model P3 of the 
vehicle side-impact crashworthiness is formulated as 
follow: 

3

10 11

P : max. TI

Sub. to :  with x x 0  x
 

In this research work, we consider that all components 
involved in the different aggregation processes are 
equally preferred, and thus the corresponding weights are 
equal. The design solutions related to P2 and P3 are 
discussed in part 4.4. 

4.3 Numerical solving 

The numerical solving problem has been addressed by 
developing a classical genetic algorithm [15]. This nature-
inspired algorithm takes into account a set of finite 
alternative solutions which are evaluated and ranked 
according to their fitness, i.e. the objective function value. 
The weakest candidates are then eliminated before a new 
set is created. Four operators, with different occurrence 
probabilities, ensure the convergence of the set toward 
the optimal point: the tournament selection, the cross-
over, mutation and climber operators. The optimization 
process has been performed with a population of 240 
individuals with an elitism strategy, a tournament size of 2 

with an initial selection pressure of 50%, a crossing 
probability of 80%, a mutation probability of 10% and a 
climbing probability of 20%.  

For the optimization problem P3, the fitness function 
has been modified to handle uncertainties. First each 
individual is evaluated 1000 times using Monte Carlo 
simulations. Moreover as the trade-off function is relative 
to a particular population, the design objective indexes 
DOI1 and DOI2 must be normalized by their maximum 
value over the current population. But in this study, for the 
design objective linked to the performance, we take as 
reference the optimal design solution of the optimization 
problem P2. In other words, we suppose that the nominal 
performance of this design which is obviously the highest 
is expected to be decreased in order to improve its 
robustness.  

4.4 Results and discussion 

The optimization problem P2 is first processed. The 
optimal solution is obtained in 344 generations and is 
reported in Tab. 4. This solution presents an overall level 
of desirability of 0.9314 for the design objective linked to 
the nominal performance (DOI1). This design is fortunately 
the same as the one obtained by deterministic method in 
[14] for the optimization problem P1. However this optimal 
design is not a robust optimal solution in particular for the 
safety criteria. In fact the observation variables y8, y9 and 
y11 are equal to their admissible values. Therefore a 
slightest variability on the design variables makes the 
safety design objective to be no longer satisfied. Finally 
the optimization problem P3 is processed with absolute 
probabilistic constraints of 90% and 99%. In this study we 
have chosen to set k=0.5 and n=3. The optimal designs 
solutions provides by P2 and P3 are denoted respectively 
as S2 and S3. 
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Designs solutions : S2 S3,90%  S3,99% 

TI 90% 0.000 0.899 0.793 

TI 99% 0.000 -0.017 0.793 

Design variables:    

x1 0.5000 0.5008 0.5000 

x2 1.2258 1.3051 1.3605 

x3 0.5000 0.5000 0.5003 

x4 1.2071 1.2742 1.3367 

x5 0.5000 0.5939 0.6574 

x6 1.4932 1.5000 1.5000 

x7 0.5000 0.5018 0.5000 

x8 0.3450 0.3450 0.3450 

x9 0.1920 0.1920 0.1920 

Tab. 4 Optimal designs for the side-impact crashworthiness 
problem with different probabilistic constraint 

According to this formulation of the design optimization 
problem, the developed trade-off approach enables to 
achieve solutions which present a more robust 
compromise than the initial solution S2. Tab. 4 represents 
the optimal designs for the side-impact crashworthiness 
problem tackled with different probabilistic constraint. The 
solution of reference S2 gets a trade-off indicator equal to 
zero since looking at Tab. 5 and Tab. 6, this solution has 
the highest score for the performance objective (DOI1) but 
doesn’t meet the conditions imposed by the stability 
objective (DOI2).  

 
Fig. 8 Seven first design variables for the side-impact 
crashworthiness problem using different approaches 

Fig. 8 illustrates the design variables of the side-impact 
crashworthiness problem brought back from the initial 
domain Ω into the range [0;1]. Looking at the design 
variables on Tab. 4 and Fig. 8, it appears that the three 
design configurations are very close. Obviously the 
variables x2, x4 and x5 are the most sensible and thus 
enable to jump from a design solution to another. 
Consequently, starting from the reference solution S2, it is 
thus possible to perform slight modifications of the design 
variables values to improve the compromise between 
nominal performance and design stability of such a 
solution.  

Designs solutions : S2 S3,90%  S3,99% 

DOI1 0.931 0.879 0.818 

Observ. variables:    

Min. y1 23.192 24.166 24.892 

y2 ≤ 1.00 0.564 0.495 0.438 

y3 ≤ 0.32 0.234 0.233 0.233 

y4 ≤ 0.32 0.247 0.250 0.253 

y5 ≤ 0.32 0.289 0.286 0.286 

y6 ≤ 32.0 28.887 28.720 28.614 

y7 ≤ 32.0 27.319 26.806 26.468 

y8 ≤ 32.0 31.999 31.210 30.665 

y9 ≤ 4.00 4.000 3.959 3.922 

y10 ≤ 9.90 9.342 9.261 9.206 

y11 ≤ 15.7 15.698 15.576 15.496 

Tab. 5 Fulfillment of the nominal performance objective for 
the side-impact crashworthiness problem 

For the optimization problem specified with a 90% 
probabilistic constraint, the best trade-off indicator equals 
0.899 and thus, the design solution S3,90% traduces a great 
improvement of the compromise between nominal 
performance and design variability. From Tab. 5 and Tab. 
6, we can observe that a compromise of 0.05 on the 
nominal performance objective enables to improve the 
design stability objective from 0 to 0.961. In term of 
performance, this is traduced by a 4% weight increasing 
while satisfying the safety criteria. However, in the same 
time, the risks of constraint violations have been reduced 
from 50% to 4 % for the safety criteria y8, y9 and y11. While 
increasing the probabilistic constraint from 90% to 99%, 
the solution S3,90% is no longer optimal since its score for 
the stability objective is null. The associated trade-off 
indicator is thus negative and so such a solution 
represents a worst choice than S2 according to the 
problem specifications. Consequently, a new optimal 
solution S3,99% is reached. As it is more difficult to satisfy 
the new requirements set on the stability objective, a 
higher decreasing on the nominal performance is required 
to improve the trade-off indicator. This solution is safer 
than the other by strongly minimizing the risks of safety 
constraints violations. 

In this side-impact crashworthiness problem, a 
modification of the shape of the trade-off function by 
increasing or decreasing the values of parameters k and n 
doesn’t modify the optimum. In fact, as there is a design 
solution with a very high trade-off indicator among all 
possible alternatives, then the optimization process 
converges toward this solution whatever the trade-off 
function specification, unless to impose a very restrictive 
value to k such as k = 0.95 and in this case, the 
optimization algorithm converges toward S2. 
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Designs solutions : S2 S3,90%  S3,99% 

DOI2, 90% 0.000 0.969 0.990 

DOI2, 99% 0.000 0.000 0.990 

Probability:    

p(y2 ≤ 1.00) 1,00 1,00 1,00 

p(y3 ≤ 0.32) 1,00 1,00 1,00 

p(y4 ≤ 0.32) 1,00 1,00 1,00 

p(y5 ≤ 0.32) 1,00 1,00 1,00 

p(y6 ≤ 32.0) 1,00 1,00 1,00 

p(y7 ≤ 32.0) 1,00 1,00 1,00 

p(y8 ≤ 32.0) 0,49 0,96 1,00 

p(y9 ≤ 4.00) 0,48 0,96 1,00 

p(y10 ≤ 9.90) 1,00 1,00 1,00 

p(y11 ≤ 15.7) 0,51 0,98 1,00 

Tab. 6 Satisfaction of the design stability objective for a 90% 
and 99% probabilistic absolute constraint 

5 Conclusion 

In this paper, a new objective function, based on the 
trade-off between nominal performance and design 
sensitivity has been developed to tackle robust design 
optimization in engineering problems. In this framework, 
an original OIA procedure based on observation, 
interpretation and aggregation functions is suggested to 
provide the designer with a convenient formulation for 
expressing his preferences and qualifying particular 
design alternatives. 

The salient point of this research work is to develop a 
trade-off function to filter a set of design solutions and to 
achieve rational compromises between design objectives. 
It results in an objective function involving not only the 
optimality and sensitivity of the solution, but also the 
compromises expected by the designer. The trade-off 
function qualifies the degradation of the nominal 
performance allowed by the designer to reduce the 
design sensitivity of the preferred solution. The 
formulation of the trade-off function used in this paper is 
based on the specification of level curves called iso-trade-
off functions. The trade-offs achieved by design 
alternatives are thus evaluated according to their 
capability to satisfy, degrade or improve the initial 
compromise.In the last section, a benchmark design 
problem based on vehicle side-impact crashworthiness 
had been presented. Through this case of application, the 
developed trade-off approach slightly modifies an initial 
solution of reference to achieve more robust design 
solutions. In this case the robustness of the design is 
evaluated according the degree of confidence in the strict 
respect of safety criteria. 

The trade-off approach coupled with an OIA scheme 
seems promising to tackle RDO problems. However the 
interaction with the designer through the specification of 
the parameters of the trade-off function must be further 
investigated in future research work.  
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