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Abstract 

The rational Bézier form has become a standard in CAD-CAM packages and data exchange 
formats, because it encompasses both conic segments (in the quadratic case) and general 
free-form geometry. We present several results on the relationship between the quadratic 
rational Bézier form and the classical definition of conics in terms of their characteristics, such 
as foci, centre, axis and eccentricity. First, we recall a simple geometric procedure to 
compute arbitrary conic segments of given focus in Bézier form. Second, from this procedure 
we derive the geometric characteristics of a given Bézier conic in a straightforward manner, 
by employing complex arithmetic. For a central conic, a simple quadratic equation defines the 
foci location, and its solution furnishes not only an explicit formula for the foci, but also for the 
centre, axis direction and linear eccentricity. 

1 Introduction 

The original polynomial Bézier model has a shortcoming, 
namely that it does not encompass all conics (only the 
parabola). This is a serious shortcoming as, for instance, 
conics find widespread use in optical and 
telecommunication instruments [3], owing to their 
remarkable reflective properties. To remedy this 
deficiency, the rational Bézier model was developed, 
where each control point is assigned a weight. Any conic 
segment can be expressed in quadratic rational Bézier 
form, and vice versa, any quadratic rational Bézier curve 
is a conic segment. This rational Bézier form has thus 
become a standard in CAD-CAM packages and data 
exchange formats. 
The Bézier representation of conics is found in most 
textbooks on CAD [5],[6],[9], and all NURBS monographs 
[4],[12],[13]. However, only Piegl and Tiller [12] include 
formulae, due to Lee [10], for obtaining the geometric 
characteristics (centre, foci, axes) of an already 
constructed rational quadratic Bézier segment, in terms of 
its weights and control points. Recently, Xu et al. [18] 
have derived explicit formulae, based on Lee’s results, for 
computing the eccentricity of a Bézier conic. Although not 
difficult, Lee’s computations [10] are rather involved. They 
require the use of Lagrange multipliers to derive the axis 
length, and involve complex formulae in terms of vector 
and cross products. Furthermore, no simple direct 
expressions are given for the foci, the relevant points 
regarding reflective properties sketched in figs. 1,2. 
This shortcoming was somehow tackled by Albrecht [1], 
who emphasizes on determining the foci of a given conic 
in Bézier form. However, her derivation requires heavy 
and sophisticated mathematical machinery, such as 
computing the singular points of a certain algebraic curve 
of degree four, or the use of a symbolic algebra package 
to derive some expressions. 

 
 

Fig. 1 Reflective properties of central conics with foci F−, F+ 
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Fig. 2 Reflective properties of a parabola with focus F 

 
Explicit formulae for all geometric characteristic are due to 
Goldman and Wang [8], although they do not employ the 
customary Bézier representation. They derive their results 
in an algebraic way, from the invariants of rational 
quadratic parameterizations under rational linear 
reparameterizations. 
We advocate an alternative, more geometric approach, 
based on representing conics in the complex plane . 
Complex analysis is a powerful and elegant tool that, 
though restricted to the planar case, facilitates the 
construction and analysis of curves in CAGD, as Farouki 
[7] notes. It might seem that representing a curve in , 
instead of in the customary 2D-Euclidean space, could be 
just a matter of taste. The point is that the space  
enjoys the algebraic structure of field, where not only can 
points be added, but also multiplied and divided, and 
square roots become meaningful. As a consequence, 
complex arithmetic drastically simplifies the expressions 
for the foci, centre, and linear eccentricity of a Bézier 
conic. 
The paper is arranged as follows. In Section 2, we first 
characterize the focus in a trivial form with complex 
notation. This basic result allows us to obtain the foci in 
Section 3, as the solutions of a (complex) quadratic 
equation. The centre and linear eccentricity come as by-
products. We also sketch how to computer other conic 
characteristics (Section 4). Finally, conclusions are drawn 
in Section 5. 

2 Characterizing the foci with complex 
products 

Before trying to obtain the foci of a given quadratic Bézier 
conic, we recall the inverse problem, that is, how to 
construct arbitrary Bézier conics of given focus F. Without 

loss of generality, we employ the standard form (with unit 
weights for the endpoints b0,b2.). Sánchez-Reyes [16] 
shows that, whereas we can choose arbitrarily b0,b2, the 
inner point b1 and weight w1=w are constrained: 
1) The point b1 lies on the bisector of the lines Fb0,Fb2, i. 

e., so that the segments b0b1 and b1b2 see F with the 

same angle Δ (fig. 3a). 
2) The inner weight w takes a specific value, determined 

by the radial distances rk: 

 

   

w2 
r0r2

r1
2

,
rk  rk

rk  bk F
. (1) 

Condition (1) simply rewrites in Bézier representation a 
classical result [14], which states that the intersection of 
any two tangents to a conic and both points of contact are 
seen from F within equal angles Δ. 

 
Fig. 3 Bézier points bk of a conic with focus F: 

a) General conic. b) Parabola. 
 

The radial vectors rk (1) can be hence written in polar form 

as complex exponentials [11] of moduli rk, and arguments 
θk equally spaced by the angle Δ: 

 
   
rk  rk e

i
k , k1k   . 

By introducing these complex exponentials and the value 
w (1), we obtain a startlingly simple characterization of the 
focus F, in terms of complex products: 

 
   
(wr1)2  r0r2, rk  bk F . (2) 

For the case of a parabola (w = 1), this relationship 
indicates that the values rk form a geometric progression, 
which admits an intuitive interpretation: the adjacent 
triangles Fb0b1 and Fb1b2 are similar (fig. 3b). This 

geometric property was already noted by Sánchez-Reyes 
[15], and derived also by Ueda [17] from the pedal-point 
construction of a parabola. 

3 Computing the foci, centre and linear 
eccentricity 

3.1 Conic classification 

Suppose that we are given a Bézier conic in standard 
form, of points bk and inner weight w1=w. To find the 
focus F, simply interpret equality (2) as an equation in the 
unknown F, and solve it. 

As shown in this Section, simple algebra yields the roots, 
according to the well-know case distinction (Fig. 4) that 
determines the conic type: ellipse or hyperbola (w ≠ 1), 
and parabola (w = 1).  
 

 
 

Fig. 4 Conic type accordino to the inner weight w. 
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To fix our ideas, we assume the customary condition 
w > 0. However, the sign of w plays no role, as reflected 
in the characterization (2), where w is squared. By 
reversing its sign, we just obtain the complementary 
segment of the same conic [5]. 

3.2 Ellipse or hyperbola 

 
The case w ≠ 1 yields a central conic, i. e., an ellipse 

(w < 1) or hyperbola (w > 1). Equation (2) is quadratic in 
F and, after straightforward manipulation, can be written 

in monic form: 
 F

2
 – 2CF + d = 0, (3) 

with coefficients C,d expressible as barycentric 

combinations: 

 

   

d  (1)b11
2 b0b2,   1/ (1w2),

C  (1)b1 M, M  1

2
(b0 b2).

 (4) 

This quadratic equation (3) has two distinct solutions, 
namely the foci: 

   F  C  c, c  C2 d , (5) 

where the symbol  denotes the principal square root of 

a complex number. Both C and c (5) admit an immediate 

geometric interpretation (fig. 5): 

 C is the midpoint of the segment joining the two foci F−, 
F+, and hence the centre of the conic. 

 c defines the direction of the major axis, joining C and 
F−, F+. The modulus c=|c| is thus the distance between 
C and either focus, called linear eccentricity. 

 

 
 

Fig. 5 Foci F, centre C and axis of a Bézier conic: 
central conics (ellipse and hyperbola) 

Observe that C is a barycentric combination (4) of b1 and 
the midpoint M of the chord b0b2. Therefore, C lies on the 
line joining b1 and M, as already Lee noted [10]. In case 
c=0, we have a circle, where the two foci coalesce 
(F−=F+=C). 

3.3 Parabola 

A parabola can be regarded as a limiting case of a central 
conic such that w = 1. Therefore, α = ∞ for the barycentric 
coordinate (4), and C lies hence at infinity, along the line 
joining b1 and M. This line defines the axis direction a (fig. 

6): 

 
  
a Mb1, M  1

2
(b0 b2) . (6) 

In this case, relationship (2) simplifies to a linear equation 
in F, whose solution is the sole focus of a parabola: 

 
  
F 

b0b2 b1
2

2a
. (7) 

 
 

Fig. 6 Foci F and axis of a parabola in Bézier form 

 

4 Other conic characteristics 

Once the foci, centre and linear eccentricity are known, 
the computation of other geometric characteristics, such 
as axis length, eccentricity or focal parameter, is a 
straightforward exercise via traditional geometry [3], as 
explained in this section. We may also use the 
intermediate shoulder point S [9] on the Bézier conic, 

shown in fig. 4: 

 
   
S  1 b1 M,  

1

w 1
. (8) 

4.1 Ellipse or hyperbola 

According to its well-known string construction [2], an 
ellipse (or hyperbola) is the locus of points such that the 
sum (or difference) of their distances to the foci F−, F+ is a 
constant 2a. This constant is easily calculated from any 
point b on the conic, such as b0 or b2, or the shoulder 
point S (8), for the sake of symmetry: 

 

   

2a  |bF|  |bF|,
+: ellipse
 :  hyperbola

. 

This value coincides with the length 2a of the major axis, 
joining the two vertices. From this length, and the linear 
eccentricity c, we derive the eccentricity e, as well as the 
semi-length b of the minor axis (ellipse): 
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e 

c

a
, b  c2  a2 . 

4.2 Parabola 

A parabola is the locus of points that are equidistant from 
a point (the focus F) and a line (directrix). It corresponds 
to limit case of an ellipse with unit eccentricity (e = 1), and 
infinite linear eccentricity. 
Now the relevant characteristic is the focal parameter p, 

namely the distance between the focus and the directrix 
(fig. 7). Similarly to the case of the axis length for an 
ellipse or hyperbola, p is easily calculated from any point 
b on the conic. We compute now its distance r to the 
directrix, which equals that to F (8), minus the projection 
of b–F along the axis, defined by a (7). If β denotes the 
angle between a and b–F, then: 

 
   
p  r(1 cos), r  |bF| . 

 
 

Fig. 7 Foci F, centre C and axis of a Bézier conic: parabola. 

5 Conclusion 

 
Complex arithmetic operations allow a simple, more 
accessible computation of the characteristics of conic 
sections in quadratic Bézier form. A complex quadratic 
equation yields as solutions the foci of a given central 
conic. Moreover, in the resulting expressions we readily 
identify the centre, linear eccentricity are direction of the 
major axis. Thus, the reflective properties of the conic are 
easily determined. For a parabola, the equation 
characterizing the focus reduces to a linear one. This 
approach for obtaining conic characteristics is 
conceptually and mathematically simpler than existing 
techniques. Otherwise complicated formulae with scalar 
and vector products reduce to trivial expressions. 
Once the foci, centre and linear eccentricity are known, 
the computation of other geometric characteristics is a 
simple exercise. 

Acknowledgement 

This work is supported by the Spanish Ministerio de 
Ciencia e Innovación, under research grant DPI2009-
10078, co-financed by the ERFD (European Regional 
Development Fund). 

References 

[1] G. Albrecht. Determination of Geometrical Invariants 
of Rational Parametrized Conic Sections. In 
Mathematical Methods for Curves and Surfaces. Oslo 
2000, Vanderbilt University Press 2001, pp 15-24. 

[2] W. Boehm, H. Prautzsch. Geometric Concepts for 
Geometric Design. AK Peters 1994. 

[3] J.W. Downs. Practical Conic Sections. Dover 1993. 
[4] G. Farin. NURB Curves and Surfaces: from Projective 

Geometry to Practical Use, 2nd Ed. AK Peters 1999. 
[5] G. Farin. Curves and Surfaces for Computer Aided 

Geometric Design, 5th Ed. Morgan Kaufmann 2001. 
[6] G. Farin, D. Hansford. The Essentials of CAGD. AK 

Peters 2000. 
[7] R.T. Farouki. Pythagorean-Hodograph curves. 

Algebra and geometry inseparable. Springer 2008. 
[8] R. Goldman, W. Wang. Using invariants to extract 

geometric characteristics of conic sections from 
rational quadratic parameterizations. International 
Journal of Computational Geometry and Applications 
14, 3 (2004) pp 161-187. 

[9] J. Hoschek, D. Lasser. Fundamentals of Computer 
Aided Geometric Design. AK Peters 1993. 

[10] E.T.Y. Lee. The Rational Bézier Representation for 
Conics. In Geometric Modeling: Algorithms and New 
Trends. SIAM 1987, pp 3-20. 

[11] T. Needham. Visual Complex Analysis. Clarendon 
Press 1997. 

[12] L. Piegl, W. Tiller. The NURBS Book, 2nd Ed. 
Springer 1997. 

[13] D.F. Rogers. An Introduction to NURBS. With 
Historical perspective. Morgan Kaufmann 2001. 

[14] G. Salmon. A Treatise on conic Sections, 6th Ed. 
Chelsea 1960. 

[15] J. Sánchez-Reyes. Single-valued curves in polar 
coordinates. Computer-Aided Design 22, 1 (1990) pp 
19-26. 

[16] J. Sánchez-Reyes. Geometric recipes for 
constructing Bézier conics of given centre or focus. 
Computer Aided Geometric Design 2, 2 (2004) pp 
111-116. 

[17] K. Ueda 1997. A Sequence of Bézier Curves 
Generated by Successive Pedal-Point Constructions. 
In: Curves and Surfaces with Applications in CAGD, 
Vanderbilt University Press, pp 427-434. 

[18] C. Xu, T.-W. Kim, G. Farin. The eccentricity of conic 
sections formulated as rational Bézier quadratics. 
Computer Aided Geometric Design 27, 6 (2010) pp 
458-460. 


