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Abstract 

From the intrinsic graphic resolution shown by the authors in the IXth International Congress 
of Graphic Engineering in Málaga in 1998, in this communication are made graphical chips 
for calculating beams with different types of support, whether they are statically determinate 
or indeterminate. It is shown the analogy that exists between the graphical approach, 
analytical and numerical. The procedure developed to make the graphical form can be 
extended beyond the field of structural analysis to other fields of technical application. It is 
intended that the presented graphical procedure serve to examine and analyze structural 
problems and that their use is appropriate for education. 

1 Introduction 

Graphical Statics is an intuitive drawing method and it 
comprises a set of simple techniques to solve problems of 
Structural Analysis when all the forces acting are 
contained in a single plane [1]. Because of its simplicity 
and handling, the graphic representation techniques 
(funicular polygon, the theorem of the three forces, 
Cremona diagram, Cullmann-Ritter method and others) 
were widely used during last two centuries [2-5]. 
Nowadays the technique of Graphic Statics has almost 
completely disappeared and been replaced by modern 
analytical and numerical methods. This displacement of 
the graphical method has been, mainly, by the inability to 
resolve, through graphic constructions, statically 
indeterminate beams. The graphical procedure has been 
limited to solve static problems, but it remains a useful 
tool to visualize, understand and verify the actions of 
groups of forces that occur in mechanical problems.  The 
authors in the VIIIth International Congress of Graphic 
Engineering (Bilbao, June of 1997), presented the 
communication titled Graphic Method of statically 
determinate and indeterminate beams calculation [7]. The 
structural problem of the bar was dealt, translating it into 
graphic operations, its approach and analytical resolution. 
Some paths were presented to make possible the graphic 
calculation of stable beams under any action system and 
support condition. As a particular example, it was 
developed, in graphical chips for calculating, a beam 
subjected to compression or traction under any action 
system and support condition. The graphic resolution 
presented, translated the algebraic expressions that 
formulate the structural problem into graphic operations, 
which in turn, should be the algorithm that makes them 
programmable. It showed that the correlation between 
design and graphical path that resolves, is useful in 
practice, when it is able to solve general problems of 
technical application. The authors also in the IXth 

International Congress of Graphic Engineering (Málaga, 
June of 1998), presented the communication titled 
Application of intrinsic graphic resolution of beams [8], 
where they developed an example of a beam subjected to 
actions that generate flexion. In this paper it is developed 
a new approach to the intrinsic graphic resolution shown 
in the aforementioned communications and it is created a 
graphical form of beams, subjected to compression or 
traction, for different kind of support, whether statically 
determinate or indeterminate. It is intended that the 
improved graphical procedure will serve to examine and 
analyze structural problems, so that its transmission is 
ideal for education. 

2 Intrinsic Method of Structural 
Analysis 

The Intrinsic Method of Structural Analysis [9-11] is a 
kind of analysis that addresses the whole linear structural 
problem through a single system of linear differential 
equations (equation of the effect in the section) and it 
resolves through analytical, numerical and graphical 
procedures. The model starts defining the concepts of the 
linear structural problem and the principles and 
assumptions applied in Strength of Materials. It also 
expresses the formal and material conditions of the 
structural design, the system of action and supporting 
conditions, application of these principles and 
assumptions. The model relates the expressions above, 
using the usual laws of equilibrium, behavior and 
compatibility, trough geometry and differential vector 
analysis. These relationships are shown in the equation of 

the effect in the section ( Appendix: Formulation), 
whose global expression is [10]: 
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This equation of the effect in the section (1), organized 

and expressed in compact form can be scored as follows: 

                
( )

( ) ( ) ( )
d s

s s s
ds

   D

e
T e q                 (2) 

The model solves this formulation by analytical, 
numerical and graphical procedures. Three resolutions 
involve similar operations. Starting with the system of the 
effect in the section, it is always gotten a bundle of 
solutions to the problem that depends on the shape, 
material and system of actions. The stable solution (the 
only one), takes shape when the support conditions are 
applied on the bundle of solutions, that are derived from 
the same mechanical design, but which are treated in the 
methods of resolution as the boundary conditions of the 
mathematical problem. 
 

3 Relationship between intrinsic 
resolutions 

The Intrinsic Method of Structural Analysis [9-11] is a 
Numeric and graphic resolutions are the reflection of the 
intrinsic analytical resolution in the repeated addends of 
the equations that are successively integrated [11]. The 
analytical bundle of solutions to the equation of the effect 
in the section (2) is: 
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Integrated action vector (data). 
The only solution is materialized when the support 

conditions are applied to the analytical bundle of solutions 
(3). When the effect in the section value is determinate in 

the initial end of the linear resistive element, ( )s
I

e , ( )se

effect is known in any point of the piece. 
The new graphic resolution presented translates the 

previous analytical expressions into graphic operations, 
which in turn, constitute an algorithm which makes them 
programmable. In fig. 1 this translation is displayed and it 
is shown the graphic bundle of solutions. 

( )se , ( )s
I

e  are unknown values, and they are 

represented with the picture on the left and the formula on 

the right in each bracket, while data ( )sQ , ( )s  T , 

backwards. 
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                                                         Fig. 1 Graphic bundle of solutions of the effect in the section 
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Determined graphically the effect on the leading end 
section of the linear resistive element to apply the 
conditions of support, you can determine the effect 
anywhere in the piece. In fig. 2 it is shown the graphical 
solution. 

 
 

 
 
 
 
 
This representation all values are data and therefore 

are expressed in each bracket with the formula on the left 
and its right associated drawing. On the graph above can 
be directly measured to obtain the value of the effect in 
the section. It is considered feasible to use the presented 
graphical method to solve the structural problem of linear 
resistive element. 

4 Beam subjected to compression or 
traction 

In the case of the bar with overlap between the section 
axis and the main axis of inertia, the equation of the effect 
in section (1) breaks down into four sub-systems of the 
effect in the section [12]. Two of them are second order 
and the other two are fourth order. 

These are the effects of traction-compression beam 
and the torsion beam on one side and on another side 
bending beam in each of the two normal axes. It is 
presented the graphic resolution of the effect equation of 
the traction-compression beam (4) because of its 
convenience to expose operations. Any other case is 
done similar. 
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                          (4) 

The formulation of the system of the traction-
compression beam effect is obtained from the equilibrium 
of forces and compatibility of displacements in the 
tangential axis of a guideline differential element. The fig. 
3 shows graphically the differential analysis made to 
obtain the system. 
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It is considered that this kind of graphic deduction of a 

differential system formulation is perfect for transmission 
and exposition. 

Uniform Force Action 

The differential system shown before (4), in the 
particular case of analyzing a beam with the same 
material and the same section along its length, under a 
uniform force action has the following analytical bundle of 
solutions: 
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Fig. 3 Traction-compression beam effect 
equation. 
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Fig. 2 Intrinsic graphical solution of the effect in the section 



P. Gonzaga et al. Graphical formulary of statically determinate and indeterminate beams 

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011 

The new bundle of solutions can be seen in the image 
below (see fig. 4). 

For beams with the same material and section, graphic 
matrix does not change. The last graphic vector in the fig. 
4 only depends on the action system. It is also possible to 
graph (see fig. 5) the relationship between the values of 
the effect at the end of a beam subjected to traction-
compression. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

In this case of effect in the section, the support only 
reports on two null values (one for each end of the beam) 
of the four that are unknown. In the general case are 
reported twelve known values of the effect in the ends, six 
for each support. It is possible, by graphic operations, to 
solve the unknown values of the effect in the supports. 
For each type of support the effect values at the ends will 
be different. Knowing the effect on the leading end of the 
beam its value is inserted in the bundle of solutions and 
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Fig. 4 Graphic bundle of solutions of the traction-compression beam under a constant force action. 
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Fig. 5 Relationship between the effects at the end of a beam subjected to traction-compression under a constant force action 
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the effect is determined at any point in the guideline of the 
beam.  Fig. 6 represents the values of the effect at the 
ends of the traction - compression beam under a uniform 
force action and the intrinsic graphic solution. 
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Fig. 6 Chip for calculating  a traction – compression beam under a constant force action 
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Point Force Action 

The differential system (4), in the particular case of 
analyzing a beam with the same material and section 
along its length, under a point force action in 

 0 1l   , has the following analytical bundle of 

solutions:  
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Where: 0;x l x l Q          

Graphic bundle of solutions is shown in the next fig. 7: 

It is graphically shown (fig. 8) the relationship between 
the values of the effect at the ends of a traction – 
compression beam. 
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Fig. 7 Graphic bundle of solutions of a traction – compression beam under a point force action 
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Fig. 8 Relationship between the effects at the ends of a traction – compression beam under a point force action 
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Knowing the effect on the leading end of the beam, to 
perform the necessary graphic operations, its value is 
entered in the bundle of solutions and the effect is 
determined at any point of the guideline of the beam. 
Applying the three possible supports casuistic, fig. 9, 
represents the values of the effect at the ends of the 
traction - compression beam under a point force action 
and the intrinsic graphic solution. 
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Fig. 9 Chip for calculating a traction – compression beam under a point force action 
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5 Conclusions 

The Graphic Statics only addresses structural problems 
of isostatic beams. As is tried to show in this 
communication, it is possible to graphically address both 
statically determinate beams calculation and 
indeterminate beams calculation by the explained 
method, the Graphic Statics can be developed beyond its 
traditional boundaries. 

Based on the differential analysis of a structural 
element, rather than static equilibrium conditions, it is 
possible to proceed to calculate any beam under any 
system of action, with all kind of support, through a known 
fundamental graphical construction, similar to the 
funicular polygon as graphical integration. For the same 
data of shape and material, graphic matrix does not 
change. In turn, for each system of action, the graphic 
vector (independent integrals and succesive) is the same. 
Making auxiliary paths of these terms and annotating 
them orderly in sum, the graphic bundle of solutions of 
each structural problem does not depend on the type of 
support. For the same conditions of shape, material and 
action, the bundle of solutions is common. The 
determination of the vector of the effect in the ends, 
varies depending on the support conditions, and it can be 
made by its corresponding graphic path. The intrinsic 
graphic solution of each structural problem is a set of final 
graphic multiplications and sums. 

The intrinsic graphic resolution, departs from the 
Graphic Statics own procedures, because includes under 
one method, the cases of isostaticity and hyperstaticity. 
The structure of graphic chips for calculating shows that 
the resolution procedure (set of graphic operations) is 
unique for all kind of problems. The different starting 
conditions of each structural problem involve more o less 
graphic paths to carry out. Most of them are common in 
different problems. Under systematic procedure 
conditions (which can be automated and provided in 
tables) the graphical resolution of the structural problem 
of the beam is useful in the practice. The own knowledge 
of Graphic Expression in Engineering is the necessary 
conceptual support to address technical problems of 
graphic calculating. 
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Appendix: Formulation 

A curved beam is generated by a plane cross-section 

which centroid P  sweeps perpendicularly through all the 

points of an axis line. The vector radius ( )sr r  

expresses this curved line, where s  (length of the arc) is 

the independent variable of the structural problem. The 
reference coordinate system used to represent the 
intervening known and unknown functions of the problem 

is the Frenet frame 
tnb

P . Its unit vectors tangent t , normal 

n  and binormal b  are: 

 

Dt r ; 2 2D Dn r r ; ntb   (A.1) 

 

Where, D d ds  is the derivative respect the 

parameter s . The Frenet-Serret equations describe the 

movement of the frame system along the axis line. They 
are obtained with the versors tangent, normal and 
binormal derivates respect the arc length. Its matricial 
expression is: 
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Where ( )s   and ( )s   are the flexure and 

torsion curvatures respectively, which represent the 
natural equations of the centroid line. 

Assuming the habitual principles and hypotheses of the 
strength of materials and considering the stresses 

associated with the normal cross-section ( , ,
n b

   ), the 

geometric characteristics of the section are: area ( )A s , 

shearing coefficients ( )n s , ( )nb s , ( )bn s , ( )b s , 

and moments of inertia ( )tI s , ( )nI s , ( )bI s , ( )nbI s . 

Longitudinal ( )sE  and transversal ( )sG  elasticity moduli 

give the elastic condition of the material. 
Applying the equilibrium of forces, the following 

equation is obtained: 
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The vectors involved in this equilibrium are: 

Internal forces 

n b n b
A A A

N V V dA dA dA         t
V t n b t n b  

Force load 
t n b

q q q  
t

q t n b  

 
The equation of moments is obtained applying the 

equilibrium law as well: 
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Fig. A.1 Internal forces and moments in Frenet frame. 

 
Once the constitutive relations are defined, kinematics 

law relates the rotations and displacements (A.5): 
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The rotations are given by the vector 

t n b
    

t
θ t n b  and rotation load 
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t
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Following the same procedure, the displacement 

equation is expressed (A.6): 
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Where displacement components are denoted as 

u v w  
t

t n b  and displacement load 

t n b
    

t
Δ t n b . 

 

 
Fig. A.2 Deflections in Frenet frame. 

Equations (A.3), (A.4), (A.5) and (A.6) are related and 
they compose the unique system of linear ordinary 
differential equations which simulates the structural 
behaviour of a curved beam element.  
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The system employed in the equation (A.7) is the 
associated to the Frenet frame in natural coordinates of 
the curved line. It is possible to implement a change of 
basis and express the functions in a global coordinate 

system 
xyz

O  which unit vectors are i , j  and k : 
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 (A.8) 

The different coefficients of the basis change matrix 
represent the direction cosines between the versors of 
both reference coordinate systems, natural and global. 
The differential system (A.7) is transformed into global 
Cartesian coordinates (1) where: 

The components of internal forces, moments, rotations 
and displacements involved in the equation (1) are 
referred to the global absolute coordinate system. 
This new general expression of the differential system, 
which simulates the structural comportment of the linear 
element, has a lower-triangular form. That important 
property permits to analytically solve the differential 
equation system using successive integrations. 
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