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Abstract 

A popular method of constructing a smooth surface with arbitrary topology is choosing an 
irregular mesh and applying iteratively the Catmull-Clark algorithm. The sequence of meshes 
obtained in this way converges to a surface, whose curvature is continuous, except in a 
vicinity of special mesh elements; apart from the curvature discontinuity there, the limiting 
surface exhibits undesirable undulations, visible on curvature images. In this paper a shape 
optimization method is described, modifying vertices of the mesh to produce a surface with 
the curvature continuous and the undulations significantly reduced.  

1 Introduction 

To be convenient for designers, representations of 
surfaces with complicated shapes must have a rather 
small complexity. The number of points manipulated 
directly by a designer may be reduced by allowing the 
designer to specify only the surface boundary and using 
an automatic procedure to compute the other control 
points. A typical approach for surfaces of arbitrary 
topology is approximating smooth surfaces by planar 
triangles, and solving geometric flow equations (see e.g. 
[2], [14], [15]). The optimization of shape explicitly using 
B-spline representations of surfaces is harder, though this 
approach turned out to be competitive for tensor product 
patches [8]. The main difficulty in extending the latter 
approach to surfaces of arbitrary topology is the necessity 
of constructing an appropriate function space. In this 
paper such a construction has been developed for 
surfaces with curvature continuous, represented by 
irregular meshes, and made (almost entirely) of bicubic 
polynomial patches. 

2 Mesh refinement 

In this section we recall the mesh representation of 
surfaces and the mesh refinement algorithm; it may be 
used to increase the resolution of surface representations 
in order to represent finer details of shape, and in the 
construction of special element domain nets described in 
Section 3. A mesh consists of vertices, edges and facets. 
An edge may belong to one or two facets; in the former 
case it is called a boundary edge, and in the latter case it 
is called internal. The vertices, whose all incident edges 
are internal, are called internal. Any facet with all vertices 
internal is also called internal. Other vertices and facets 

are called boundary vertices and facets. The internal 
vertices, whose numbers of incident edges are other than 
four, and the non-quadrangular internal facets, are called  
special elements of the mesh.  

The mesh refinement algorithm is implemented using two 
operations, called doubling and averaging. 

Doubling is a construction of a new mesh, with copies 

of all original facets and with additional facets, 
corresponding to the original edges and vertices. A~facet 
corresponding to an edge has four edges and vertices; its 
two opposite edges have the vertices, which coincide with 
the original edge end points, and thus the facet is reduced 
to a line segment. A facet corresponding to a vertex is 
degenerated to a point; the number of its vertices is the 
number of edges incident with the original vertex (plus 1 
for a boundary vertex, fig. 1a)  

Averaging is a construction of a new mesh, whose 

vertices correspond to the facets of the given mesh; they 
are positioned at the gravity centres of the sets of vertices 
of those facets. Each internal edge produces an edge 
between the vertices corresponding to the two facets 
sharing that edge. Facets of the new mesh correspond to 
the internal vertices of the given mesh (fig. 1b). 

Refinement is a doubling followed by n averaging 

operations. Note that  
 

- All facets of a mesh obtained by doubling, 
corresponding to the edges of the original 
mesh have four vertices and edges. 
Moreover, all internal vertices are incident with 
four edges. Thus all special elements of    a 
mesh obtained by doubling are facets. 

- Averaging converts special vertices to special 
or boundary facets and special facets to 
special or boundary vertices. If n is even, then 
the mesh refinement produces a mesh, whose 
all special elements are facets. If n is odd, 



P. Kiciak Shape optimization  

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011 

then all special elements of the result are 
vertices. No new special elements are 

produced by the operations discussed here.  
- If a mesh has no special element, then the 

refinement operation implements the Lane-
Riesenfeld algorithm [11] (see also [12]). 
Iterating it produces a sequence of meshes 
convergent to a limiting surface. Any part of a 
mesh from this sequence, consisting of n x n 
facets    and n+1 x n+1 vertices, which form a 
square array with the edges joining the 
neighbouring vertices in the columns and 
rows, is the B-spline representation with 
equidistant knots of a polynomial patch of 
degree (n,n), being a part of the limiting 
surface. The convergence of the sequence of 
meshes is fast: some estimate of the distance 
between the mesh and the limiting surface, 
after the refinement is decreased four times. 

- If a mesh has special elements, then the 
limiting surface consists of an enumerable set 
of polynomial patches of degree (n,n). The 
refinement operations with n=2 and n=3 are 
special cases of the Doo-Sabin and Catmull-
Clark algorithms (see [3], [1], [12]). 

 
A mesh to be optimized must have all facets 

quadrangular. The shortest path between any two special 
vertices or between a special vertex and a boundary 
vertex must consist of at least two edges, which belong to 
different facets. Usually two iterations of the Catmull-Clark 
algorithm suffice to produce a mesh satisfying these 
conditions from an arbitrary mesh. 

 

3 Space and basis construction 

 
The surface representation may be written in the form 
 
                                ∑     

 
                                  (1) 

 
where            are the mesh vertices, and 

        are functions defined in the domain made of 

elements described below. The shape optimization is 
done by modifying some vertices of the mesh. 

The surface consists of polynomial patches; each of 
them corresponds to an internal facet of the mesh. There 

are two types of the patches. An ordinary patch 

corresponds to a facet surrounded by eight other facets, 

whose vertices may be arranged in 4 x 4 array (fig. 2). 
Such an assembly of 9 facets, 16 vertices and  24 edges 
will be called an ordinary patch control net. It is 
associated with a so called ordinary element, which is a 

unit square. 
 

 
Fig. 2: An ordinary patch control net and a Sabin net 

of radius 2 in a mesh 
There are 16 basis functions  , nonzero in any 

ordinary element; they are associated with the 16 vertices 
of the ordinary patch control net. The restriction of    to 

the ordinary element is the tensor product of the 
polynomials, which describe cubic B-spline functions with 
integer knots. Thus the ordinary patch control net is the 
bicubic B-spline representation of the ordinary patch. 

An example of a function   , nonzero in 16 adjacent 

ordinary elements, is shown in fig. 3. 
Parts of a mesh surrounding special elements are 

referred to as Sabin nets [4]. In our case all special 
elements are vertices incident with     edges; a part of 

a mesh surrounding such a vertex, made of     facets, is 

called a Sabin net of radius  . A Sabin net of radius 2  
(fig. 2) represents   special patches. 

Fig. 1: Doubling (a) and averaging (b) of a mesh 
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Fig. 3: A basis function with support consisting of 

ordinary elements 
 
A special element is the domain of a parameterization 

of the   special patches represented by a Sabin net. The 
idea of construction of a special element and basis 
functions nonzero in it is as follows: let    denote the 

composition of the refinement operator (doubling followed 
by 3 averaging operations) and the operation extracting a 
Sabin net of radius 3 around a vertex incident with   

edges from the refined mesh. The operator    has the 

greatest eigenvalue 1 and the multiplicity of the next 
greatest eigenvalue is 2. There exists a planar Sabin net 
with   axes of symmetry, which is an eigenvector of    

associated with that double eigenvalue, (see fig. 4). 
In the construction its size is chosen so as to obtain 

the area    described below of measure  , which is 

relevant for the choice of the constants    (see Section 4). 
Such a Sabin net is called a special element domain 

net. Subnets of a special element domain net represent 

   bicubic patches, which surround a curvilinear polygon 

   with   corners. The area    is divided into   curvilinear 

quadrangles   
        

 , identical up to rotations and 

axial symmetries. A polynomial mapping    [   ]
   ̅ 

  is 

defined for          . Then Sabin nets in  3 are 

constructed as follows: the vertices have the x,y 
coordinates as in the domain net. The   coordinate of one 

of      vertices of the Sabin subnet of radius 2 is set to 

1, and the other vertices have    . The surface made of 

the ordinary patches represented by such a net is a graph 
of a scalar function    defined in an area with the hole   . 

A set of polynomials     of degree (9,9) is constructed, 

such that the function    defined piecewise as   ( )  

   (  
  ( )) for     

  is of class   (  ) and it is a 

numerical solution of the triharmonic equation        

in   , with the boundary condition fixing the function value 
and the first and second order cross derivatives at the 

boundary of   , determined by the function   . As a 
consequence, the special patches have polynomial 
parameterizations of degree (9,9), and if the surface 
represented by a mesh is regular, then its curvature is 
continuous. Examples of basis functions constructed in 
this way are shown in fig. 5. Details of this construction 
are described in [6], where it has been used to fill 
polygonal holes in mesh surfaces (see also [7]). The sum 
of the basis functions in each element (special as well as 
ordinary) is 1, and due to this fact the relation between the 
surface and the mesh representing it is an affine invariant.

 

 
 

 

 
 

Fig. 4: Special element domain nets for k = 3, 5, 6, 8 

Fig. 5: Examples of basic functions nonzero in a special element 
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4 Optimization criterion 

It is assumed that the surface has a boundary, which is 
fixed together with the tangent plane and mean curvature 
at each point of the boundary. This is done by fixing all 
vertices of the mesh, whose distances from any boundary 
vertex (measured by the number of edges in between) 
are less than 3. If necessary, one can fix additional 
vertices, which is a method of imposing constraints on the 
surface. Such constraints are called soft, as opposed to 
hard constraints, having the form of linear equations (to 
be satisfied by mesh vertices), expressing e.g. 
interpolation conditions for the surface. Examples of using 
constraints are discussed in section 6. The shape 
optimization is done by searching a minimum of the 
functional 

                     ( )  ∫ ‖   ‖ 
   

 
                               (2) 

Here   is a surface, whose parameterization   is 

represented by a mesh, as described in previous 
sections. The symbol     denotes the gradient of the 

mean curvature on the surface; the integration is done 
with respect to the surface measure. The value of the 
functional   may be computed by integration over the 

elements: 

                  ( )  ∑ ∫         √                         (3) 

4.1 where   denotes the set of element indices,    is 
an element, and   is the matrix of the first fundamental 

form of the parameterization  . The mean curvature   is 

interpreted here as a function defined in the elements, 

and    [
  

  
 
  

  
] is the ordinary gradient. Though the 

evaluation of the functional   may be done using 

derivatives of the parameterization, the functional is 
parameterization independent, i.e. its value is determined 
by the shape of the surface  . This causes a trouble for 

the numerical algorithm, as the minimization problem may 
not have a unique solution. To overcome this problem, a 
regularization term is added. The optimization goal is to 
minimize the functional 

                        ( )   ( )    ( )                                (4) 

where   is a positive constant discussed later, and 

                     ( )  ∑   ∫ ‖    ‖ 
                             (5) 

The letter   denotes the orthogonal projection of  3 on 

the tangent plane of the surface; this projection is 
supposed to weaken the influence of the surface 
curvature on the value of the functional  , which 

increases with the growth of undulations of constant 
parameter curves of the parameterization   over the 

elements. The coefficients    are arbitrary positive 

constants. If a mesh represents a tensor product bicubic 
B-spline patch, then one can take the same    for all 

elements. Experiments show that taking            
works also for meshes with special elements, i.e. it makes 
the optimization method convergent. However, the 
regularization term affects the shape of constructed 
surfaces, and the effect is most pronounced in a vicinity of 

special patches. The resulting quality degradation may be 
reduced by taking smaller coefficients    for special 

elements and their neighbouring ordinary elements. 
Taking    too small causes troubles with the convergence 

of the optimization algorithm. Studying the influence of the 
parameters    on the result and developing alternative 

regularization methods are open problems. If an isometry 
is applied to the surface, the values of both terms in 
Formula (4) remain unchanged. The choice of the factor 

  
| | 

  
  

where    is the diameter of the (fixed) surface 

boundary and | | is the total number of elements, is based 

on the analysis of behaviour of   and   when a homotetia 

is applied to the surface or to the parameterization domain 
(see [8]). With   chosen as above any homotetia changes 

both terms in (4) by the same factor, which ensures the 
invariance of the construction with respect to geometric 
similarities. 

5 Optimization algorithm 

The optimization algorithm is based on the classical 
Ritz method. The arguments of the function 

                    ̃(            )   (∑      )                  (6) 
are the coordinates of the non-fixed mesh vertices. The 

numerical procedure is searching for a zero of the 

gradient of  ̃. Subsequent approximations    of the 

solution may be constructed using an iterative procedure 
described in [8], where it was used to optimize the shape 
of bicubic B-spline tensor product patches. During an 
iteration, the system of linear equations 

                              ( )    ( )                                  (7) 

is set up, where  ( ) is the gradient and  ( )
 is the 

Hessian of the function  ̃ at  ( ). If the matrix  ( )
 is 

positive-definite, then the system [7] is solved and then, if 

 ̃( ( )   )   ̃( ( )), the procedure takes  

 (   )   ( )   ; this is a Newton method step. If the 

Hessian matrix is not positive-definite or the Newton 
method does not decrease the function value, 
minimization along the Levenberg-Marquardt trajectory [5] 
is done, i.e. searching for a minimum of the function 

 

                      ( )   ̃( ( )    )                                (8) 

 
where    is the solution of the system of equations 

 

                    ( ( )    )     ( )                              (9) 

 
This method makes it possible to use starting points 

insufficient for the Newton method. The formulae to 

evaluate (using quadratures) the function  ̃, its gradient 

and the Hessian may be found in [8]. 
The Hessian matrix is sparse, with nonzero coefficients 

scattered irregularly. By renumbering of variables it is 
possible to transform it to a matrix with an irregular band 
containing relatively few zeros, which may be 
decomposed at a reasonable cost using the Cholesky's 
method. The most time-consuming part of the algorithm is 
the computation of the Hessian coefficients and therefore 
if the Newton method step is effective, i.e. in addition to 

decreasing the value of  ̃ it decreases the length of 

gradient by the factor at least 4, the Hessian matrix and its 
decomposition factor are reused in subsequent iterations. 



P. Kiciak Shape optimization  

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011 

The rate of convergence is thus decreased, but the total 
computation time is shorter. 

The algorithm outlined above works well enough if the 
number of unknown variables is moderate --- up to about 
15000 (i.e. approximately 5000 mesh vertices). 

Beyond that the Cholesky's decomposition is too 
inefficient. The optimization method appropriate for 
meshes with greater numbers of vertices is based on the 
domain decomposition. The idea is as follows: subsets of 
the set of vertices, called blocks, are chosen, which 

cover with overlaps the set of the non-fixed mesh 
vertices. Iterations of the minimization method described 
above are made for subsequent blocks until the Newton 
method step for each block is effective. Then the final 
phase of optimization is entered: the Newton method for 
the entire set of unknown variables. The system [7] is 
solved using the conjugate gradient method [10], with a 
preconditioner described below. 

Let   be a block index and let 

 

  
( )
      

( )  
   

  

 

Where  ( ) is the Hessian matrix of  ̃ at  ( ),    is the 
diagonal matrix with the  -th diagonal coefficient equal to 

1 if the  -th argument of  ̃ belongs to the  -th block, and 

0 otherwise, and    is the permutation matrix, chosen so 

as to obtain 
 

  
( )
 [

   
  

] 

 
where    is a nonsingular matrix with a possibly 

narrow band. The preconditioner is the matrix   such that 

 

    ∑  
 

 

[  
   
  

]    

 
The conjugate gradient method may fail, as the matrix 

 ( ) may be undefinite even if all matrices    are positive-

definite. In that case a number of additional iterations for 
the blocks are made. 

Fig. 6 shows an example of blocks. Black dots mark 
the vertices, which belong to one block, and the vertices 
from more than one block are marked with blue dots. Let 
the diameter of a block be defined as the maximal 
distance (the number of edges in the shortest path) 
between its vertices. It is desirable (because of the rate of 
convergence of the optimization algorithm) to choose 
blocks, whose diameters are small relative to their 
numbers of vertices, and making rather wide overlaps. 

The algorithm used in the existing implementation choses 
seeds, i.e. some vertices of the mesh, and then it builds 

in the set of vertices a discrete Voronoi diagram for these 
seeds. Each block consists of the vertices from one 
Voronoi region extended to create overlaps. The resulting 
rate of convergence is often satisfactory, but further 
studies of the subject are planned. 

Using the preconditioner made of blocks as described 
above is a special case of the additive Schwarz method 
[13]. With the block algorithm is possible to optimize the 
shape of surfaces represented by meshes having up to 
30000 vertices. If an even finer representation of the 
surface was necessary, a multilevel method would have to 
be used; currently it is developed. 

 

6 Results 

 
Fig. 7 shows a surface obtained by iterating the 

Catmull-Clark mesh refinement operator and two surfaces 
with shape optimized. The mean curvature of the two 
surfaces, shown using the texture, is distributed much 
more evenly. The number of vertices of the mesh 
representing the surface in the middle is 1007, and 719 of 
these vertices were computed by the optimization 
procedure (the other vertices determine the surface 
boundary). For the surface on the right side there are 
3743 vertices, 3167 of which were non-fixed. The 
optimization of the surface in the middle took 134 
seconds. Then the mesh was refined and used as the 
starting point for the optimization leading to the surface on 
the right side, which was done in 791 seconds. In both 
cases the non-block optimization procedure was used.  

The optimized surfaces shown in fig. 7 slightly bulge at 
the central parts. To improve the shape one can impose 
constraints by fixing some vertices in addition to the 
vertices, which determine the surface boundary. The 
surfaces shown in figures 9-11 were obtained with 
constraints; the meshes representing the surfaces on the 
left side are shown in fig. 8. The vertices, which determine 
the surface boundary, are marked with blue dots, while 
red dots denote the vertices fixed in addition. 

The constraints for the junctions of three and five tubes 
in figures 9 and 10 fix the marked vertices along straight 
lines in two parallel planes. The resulting surfaces contain 
curves very close to line segments in two parallel planes. 
To obtain surfaces containing these line segments one 
might use hard constraints, i.e. interpolation consitions for 
the surface. However, the implementation of the 
construction with hard constraints is currently an open 

Fig. 6: Blocks of vertices and their overlapping parts 
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problem, and the soft constraints make it possible to 
obtain very close results. 

The junctions of tubes in fig. 11 were obtained after 
fixing some mesh vertices so as to obtain a B-spline 
approximation of a part of a cylinder. Additionally the 
vertices of a polyline made of the mesh edges were fixed 
in order to outline the desired shape of the appropriate 
part of the surface. 

Some information about the experiments, which gave 
the nine surfaces shown in figures 9-11, are given in  
tab. 1. The symbol    denotes the total number of 

vertices,   
  is the number of vertices computed by the 

optimization procedure,    is the number of elements,    

is the number of blocks and    denotes the number of 

Hessian evaluations during the optimization; if more than 
one block was used, then the first number in this column 
denotes the number of block Hessians (the matrices   , 

see Section 5), and the second number is the number of 
Hessian matrices for the entire system of equations 
computed in the final stage of optimization. Computation 
times are given in the last column. All these experiments 
were done using a sequential, single-thread 
implementation of the algorithm, and a computer with a 
2.4GHz Pentium Core 2 processor. 

 

fig.      
           

time 
(s) 

9 1007 667 836 1 5 75 

9 3743 3033 3428 1 5 563 

9 14399 12969 13796 6 
2

0, 1 
2115 

10 1677 1095 1392 1 4 129 

10 6237 5055 5712 5 
9, 

1 
525 

10 23997 21615 22992 
1

0 
2

6, 1 
3523 

11 1871 925 1712 1 6 163 

11 7199 4021 6896 1 6 810 

11 28223 16741 27632 8 
2

7, 3 
4647 

Tab. 1: Data sizes and computation times 

 

7 Conclusion 

Spline surfaces represented by meshes are truly 
smooth, as opposed to sets of planar triangles computed 
by most shape optimization procedures described in 
recent publications. If smoothness is a mark of quality, 
then the construction described in this paper may produce 
surfaces of very high quality; to see any undulations one 
has to use very sharp visualisation tools, like curvature 
maps, as these undulations are invisible on pictures 
rendered using a lighting model and no texture, and even 
with weaker tools, like reflection or highlight lines, it is 
hard to reveal them. Imposing constraints may cause the 
appearance of undulations, however when constraints are 
used with sufficient care, one can obtain also surfaces of 
such a quality. 

There is no universal optimization criterion, and 
obviously one may need to modify the functional 
considered in this paper. The simplest possibility is to 
take advantage of the lack of affine invariance of the 
construction, by changing the coordinate system with a 
nonuniform scaling; this technique was used in [8] for 
tensor product patches. The rule is, that to decrease 
undulations in some direction one should scale down the 
surface in that direction. While this possibility greatly 
enhances the flexibility of the construction, it may be 
insufficient if the boundary conditions enforce rapid 
changes of the surface curvature. It seems that using 

curvilinear coordinate systems, specified with free-form 
deformations, might make it possible to adopt the 
optimization criterion to a really wide variety of 
applications. Implementing that is, however, another open 
problem. 

Soft constraints may be used, to a certain extent, to 
simulate hard constraints in the following way: each 
polynomial patch of the surface corresponds to an internal 
facet, and each corner of the patch may be associated 
with a vertex of this facet. If interpolation conditions (i.e. 
hard constraints) are to be satisfied by the corners of the 
patches, then at first one can fix the vertices at the 
desired locations of the patch corners. The interpolation 
conditions will be satisfied by the surface optimized with 
these soft constraints with some error. For each patch 
corner one can find the position error vector, subtract it 
from the associated mesh vertex, and fix the vertex at the 
new location. Then the optimization may be repeated. 
After one or at most a few iterations the interpolation 
conditions should be satisfied with a very small error. 

Having an optimized mesh, one can generate Bézier 
patches forming the surface. If the degree (9,9) of the 
special patches is too high, one can replace them by 
patches of lower degree, filling the polygonal hole in the 
surface, e.g. using the method described in [7], which 
produces biquintic patches forming a tangent plane-
continuous surface with small discontinuities of curvature. 
Another possibility is using the Catmull-Clark algorithm to 
obtain a better approximation of the limiting surface 
represented by the optimized mesh. 

An open source implementation of the construction 
described here is available from the author's web page 
[9]. This implementation is written in C; it was compiled 
using the GCC compiler and built into an interactive 
program running in the XWindow environment. It may be 
used directly to design surfaces, or it may serve as a 
reference in developing highly optimized, parallel 
industrial implementations. 
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\parskip 0pt 

Fig.7: A surface obtained by iterating the Catmull-Clark and results of shape optimization 

Fig. 9: A junction of three tubes 

Fig. 8: Meshes with some vertices fixed to impose constraints 

Fig. 10: A junction of five tubes 

Fig. 11: Another junction of tubes 
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