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Abstract 

The sphere is a common object in uncountable engineering problems, which not only 
appears in structural elements like domes but also in thousands of mechanisms normally 
used in diverse kinds of machines. To design, calculate and analyze the behaviour on service 
of spherical elements it’s essential to have a good method to create an ordered group of 
discrete points of the spherical surface from the parametric equations commonly used to 
define the sphere continuously. 

One of the best known and widely used in high-level programming environment is 
MATLAB. The programming language has thousands of functions, lots of them specially 
designed for engineering processes. One of these functions generates a sphere knowing a 
given radius and shows the result. Nevertheless, this function is really imprecise because it’s 
based on parallels and meridians besides the obtained vertices don’t keep a constant 
distance each other. That because it would be appropriate to design a new function to 
generate accurate discrete approximations of the sphere. 

The objective of this paper is create a low-level function in MATLAB to obtain a discrete 
sphere with high regularity and high approximation in order to provide a good base to solve 
sphere-based engineering problems. To ensure a perfect symmetry and a high regularity 
platonic bodies will be used as a base to divide the continuous spherical surface in a finite 
number of regular triangles. The obtained results for the different seed bodies will be 
represented graphically and compared to each other. The accuracy of each method will be 
evaluated and compared too. 

1 Introduction                                             

The objective of this work is to design a program that 
allows triangulation of a sphere defined by the value of its 
radius (eq. 1, eq. 2, eq. 3; being R the radius of the 

sphere, the zenithal coordinate and  the azimuthal 
coordinate) [1], [2]. The process of triangulation [3], [4] 
involves the calculation of new vertices of the polyhedron 
which will replace the given sphere, its proper association 
forming triangles, which are the faces of the polyhedron, 
and finally, the graphic representation in a three-
dimensional environment of those faces, giving rise the 
polyhedron result of triangulation, whose vertices have to 
meet the necessary condition of being contained in the 
initial sphere. According to these last conditions it follows 
that for the fulfilment of these objectives the program will 
work generating polyhedra inscribed in the given sphere, 
discarding the circumscribed polyhedral approach option. 
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1.1 State of art 

MATLAB provides developers a huge amount of 
generic functions, many of them oriented to create and 

show three-dimensional surfaces. Between these 
functions there is one that allows us to generate a three-
dimensional mesh for the surface of a sphere: 
“SPHERE(N)”. This function creates a mesh of the 
spherical surface, where the radius of the sphere is one 
unit and “N” is the number of divisions in which the vertical 
diameter of the sphere is divided by the parallels planes. 
So “N” is the number of meridians, or the number of 
parallels plus one, used to create the mesh from the 
theoretical sphere. 

At first one could think that this approach is enough to 
cover any kind of need for obtaining a discrete sphere. 
The lack of accuracy derived from a low value of the 
parameter “N” could be easily solved increasing its value 
and, therefore, the computing time. Nevertheless, a 
deeper analysis would show that this approach preserves 
a sensible difference between the longest and the 
shortest edges of the mesh, even increasing the value of 
the parameter “N”. This detail could be not so important if 
the approach is only used to obtain a three-dimensional 
rendering with no further intention but it becomes critical 
when the obtained data (points and edges of the result 
mesh) are used in engineering calculus like, for example, 
resistance of structures. 

In order to compare the results of the developed 
algorithm with the results offered by the MATLAB built-in 
spherical approach the divergence between the shortest 
and the longest edge of the approach will be calculated 
for several values of the parameter “N”. This divergence 
will be used as a measure of the regularity of the 
approach. 



M. Pérez et al. Development of an algorithm for a triangular approach to the sphere. 

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011 

The first step to calculate the shortest and the longest 
edges of the mesh is to determine the radius of the 
smallest and the biggest parallels (excluding equator) of 
the geographic coordinate system (meridians and 
parallels) used to divide the sphere. The radius of the 
smallest parallels, which are the closest to the poles is 
given by the eq. 4, where “R” is the radius of the sphere 
and “n” is the number of vertical divisions made by the 
parallels. 
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The radius of the biggest parallels, which are the 

closest to the equator, are given by the eq. 5 (if “n” is odd) 
and the eq. 6 (if “n” is even), where “R” is the radius of the 
sphere and “n” is the number of vertical divisions made by 
the parallels. 
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The longest edge between the edges that form the 

meridians is extracted from the radius of the smallest 
parallels and its value is given by the eq.7. 
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The shortest edge between the edges of the meridians 

is extracted from the radius of the biggest parallels and its 
value is given by the eq.8 and the eq. 9, depending on if 
“n” is odd or even, respectively 
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The parallels edges are obviously calculated from the 

radius of the corresponding parallels: the longest edge is 
obtained from the biggest parallel radius and the shortest 
edge is calculated from the smallest parallel radius, both 
of them following the eq. 10, where r is the corresponding 
radius of the considered parallel. 
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Using the obtained equations a complete study of the 

edges divergence of the geographic coordinate system-
based MATLAB own spherical approach algorithm is 
carried on for several values of the “N” parameter, in 

order to obtain solid data based on a commercial solution 
to compare our algorithm results with. 

The achieved results are shown in the table Tab. 1, 
where the first row shows the divergence between edges 
of the parallels, the second row shows the divergence 
between edges of the meridians and the last row contains 
the global divergence of the edges of the approach. Each 
column corresponds to a different simulation using a 
different value of “N” and, consequently, a different 
number of generated faces (N

2
). 

 

Faces (n
2
) Parallels Meridians Global 

5
2 

0.2114 0.4944 0.7518 

10
2
 0.2472 0.4314 0.4314 

15
2
 0.2075 0.3831 0.3831 

20
2
 0.1764 0.3470 0.3471 

25
2
 0.1522 0.3200 0.3200 

30
2
 0.1340 0.2984 0.2984 

35
2
 0.1195 0.2809 0.2809 

40
2
 0.1079 0.2662 0.2672 

45
2
 0.0983 0.2537 0.2570 

50
2
 0.0904 0.2428 0.2477 

Tab. 1 Divergence between edges 

The table shows results of the spherical approach 
regularity (divergence between edges) analysis applied 
over the MATLAB “SPHERE” algorithm. The values are 
given as multiples of the radius of the original sphere (R). 

The evolution of the global edge divergence obtained 
using the MATLAB “SPHERE” algorithm increasing the 
value of “N” is our estimator of the regularity of the 
approach and is graphically shown in the fig. 1. The 
divergence (blue line) is the difference between the 
longest edge (red line) and the shortest one (green line). 

 

Fig. 1 Evolution of the divergence between edges by 
increasing the value of the parameter “N”. 
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2 Development of the program                                     

2.1 Main structure and basic lines of the 
program 

In order to achieve the proposed objectives multiple 
algorithms [5], [6], [7] can be designed for generating 
polyhedral surfaces, starting from different basic 
polyhedra. However, if you want to make a high quality 
triangulation, namely ensuring that the resulting 
polyhedron vertices are evenly distributed across the 
surface of the sphere and that the faces of the generated 
polyhedron are identical, it is clear that you have to start 
to work over a regular polyhedron whose faces are 
triangles. Between all the Platonic solids there are three 
that meet this condition: the tetrahedron, the octahedron 
and the icosahedron, with four, eight and twenty 
equilateral triangles respectively. All of them are therefore 
valid seed polyhedra to initiate a precise triangulation of 
the sphere. Despite not being made up of triangles, the 
cube deserves special attention, since it is readily 
apparent that if we draw the two diagonals of each of their 
faces we get four new triangular faces from each of the 
initial square faces. However, it is also seen that to create 
a valid and operative seed polyhedron from this cubic 
approach it is necessary to move the new vertices 
(centres of cube faces) along the perpendicular line to the 
face that cut the face of the cube in its centre, until they 
meet the cube circumscribed sphere membership 
condition. Once we have modified the cube we obtain a 
twenty-four non-equilateral triangular faces polyhedron 
which is capable of being used as a basis for the 
triangulation of the sphere. 

Having analyzed the alternatives, we decided to use 
the four polyhedra mentioned above to develop four 
different models of triangulation of the sphere. Three of 
them will generate a net of equilateral triangles: The 
tetrahedral triangulation [8], the octahedral triangulation 
and the icosahedral triangulation; and the other one will 
create a network of non-equilateral triangles derived from 
the cube polyhedron described above: Cubic 
triangulation. 

Each triangulation method need, first at all, to generate 
the corresponding seed polyhedron, taking the radius of 
the sphere demanded by the user as the only input data. 
To generate the tetrahedral seed, inscribed into the 
theoretical sphere, it is necessary to use the eq. 4 to 
calculate the length of each edge of this regular 
polyhedron (a) from the radius of the sphere (R). The 
length of each edge of a cube inscribed into a sphere is 
given by the eq. 5 and it’s the first data used to create the 
cube-derived triangular-faced seed polyhedral. The 
octahedral seed can be generated like the tetrahedral one 
using the eq. 6 to obtain the proper edge length. Finally 
the icosahedral seed is generated in the same way using 
the eq. 7 to calculate the corresponding edge value. 
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Once both the objectives and the modus operandi of 

the program are fully defined, it’s necessary to establish 
the form that it has to have, in terms of structuring and 
encapsulation of the code refers [9], [10], [11]. Since four 
tasks are performed in parallel on the same program, a 
base program and another four specific sub-programs will 
be used. The main program will interact with the user and 
will call one of the four sub-programs, which will perform 
the necessary calculations and display the final result 
obtained, as appropriate to the user's choice. 

Once at this point we must define the type of program 
that will be obtained after the compilation of the code and 
the programming language that will be used to write the 
corresponding code. In order to allow the later use of the 
generated program as part of medium and high level 
engineering programs we decided to adopt as kind of 
program the ".m" function type, which corresponds to a 
MATLAB own kind of file. MATLAB is a worldwide well-
known computer program for advanced calculation based 
on matrices [12], [13], [14], [15], [16], [17], [18], [19], [20], 
[21]. 

The wide use of MATLAB in almost all the branches of 
the applied sciences, and even more in the engineering 
world, will make possible to include our function in a huge 
range of applications. MATLAB also offer us the possibility 
of converting the program into an universal C library, 
which can be included in any other program. In order to 
program this type of executable MATLAB has its own 
language and a compiler called "Editor", from which 
programs can be written, apart from the command window 
itself, or "Command Window", which you can perform any 
operation or all of them directly, without creating a 
corresponding program in a ".m" file using the editor. In 
our case we use the command window only for testing or 
simple calculations may be necessary isolated in the 
process of project development and eventual debugging. 
The necessary software will be developed exclusively as 
".m" files using the editor. 

In the coming paragraphs we will analyze the base 
program and the various sub-programs that are invoked 
from it. 

2.2 Main program 

The base program has only one task: to determine the 
approximation of the sphere that the user (or, in its case, 
higher level program that calls the function) wants to 
perform and to execute the corresponding program for 
this approach. To obtain the user’s preferences (if the 
function is called from a higher level program the 
necessary information will be passed as parameters to the 
function), the program prints out a list of the four options 
available to the user and urges him to choose one 
providing the numeric value associated with it and 
corresponding to the order they are listed. Once stored 
this value in a variable it is contrasted with the values for 
each option to find the selected option. When the user’s 
choice is found, the main program calls the program that 
performs the chosen spherical approximation and the 
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execution of the main program finishes at the end of the 
called subroutine. If the value entered by the user does 
not match with any of the options available, the program 
will repeat the question until the user gives a coherent 
response. 

The base program name will be Sphere.m, so to start 
running our suite of triangular approximations of the 
sphere simply type "Sphere" in the MATLAB command 
window after making sure that we are working on the 
proper "Current Directory". 

The sub used to calculate and graphically display the 
different approaches of the sphere will be detailed later 
and are the following ones:  
- Triangulation_tet.m performs the tetrahedral 

triangulation of the sphere.  
- Triangulation_cub.m performs the cubic triangulation of 

the sphere.  
- Triangulation_oct.m performs the octahedral 

triangulation of the sphere.  
- Triangulation_ico.m performs the icosahedral 

triangulation of the sphere. (1) 

2.3 Structure of each triangulation of the sphere 
algorithm 

The first step when we start writing code for any of the 
sub files -Triangulation_tet.m, Triangulation_cub.m, 
Triangulation_oct.m, Triangulation_ico.m- should be to 
delete all the variables that will be used during the 
execution of the program, in order to avoid that previous 
values interfere giving inconsistent results. In our case, 
since the programs do not use any previous variable 
stored in the workspace, we decided to delete all of the 
variables using the command "clear." This step will 
always take place at the beginning of all the sub-
programmes.  

Then, it proceeds to ask the user (or higher level 
program) for the radius of the sphere whose triangulation 
approach he wants to perform and the number of 
divisions that will take place, after triangulation, in each of 
the edges of the corresponding seed polyhedron 
(tetrahedron, cube, octahedron or icosahedron) inscribed 
into the sphere which radius was introduced above. Note 
that this last value corresponds to the square root of the 
number of triangles in which each of the faces of the 
inscribed polyhedron is subdivided, that is to say, if you 
enter a value "n", n

2
 triangles will be generated for every 

initial triangular face. This is a precision parameter of the 
approach to be made. A too high value of this parameter 
will provide more accurate results but will involve a 
greater number of points that may make it harder the 
visualization of the 3D generated polyhedron. The 
increase in computing time is not significant for 
reasonable values of precision. Anyway, the use of the 
function in real-time systems or any other kind of high 
level programs that require high speed execution would 
force us to establish a balance between the accuracy of 
our results and the meeting of the real-time requirements. 

A POINTS matrix (TET_POINTS, CUB_POINTS, 
OCT_POINTS or ICO_POINTS, in each sub) is 
constructed with the vertices of the inscribed polyhedron 
sorted by rows and expressed in spherical coordinates, 
so that the first column contains the radial component, the 
second one the azimuthal component and the third one 
the zenithal component. These last two coordinates are 
given in radians, while the radius is expressed in the 
same units used by the user to enter the value.  

Then the FACES matrix (TET_FACES, CUB_FACES, 
OCT_FACES or ICO_FACES) is generated by combining 
the rows of the corresponding POINTS matrix (vertices of 
the tetrahedron) in groups of three to form the different 
triangular faces (three points each) of the tetrahedron.  

Once these matrices are generated, we construct the 
ORDER array, which consists of sets of three numbers 
that are the indices of three of the points that will be 
obtained later, when the division of each triangular face of 
the tetrahedron is performed and whose mission is to 
define in what order they join the new generated points to 
form the new faces. The indices are assigned to each 
face from top to bottom and from left to right with the top 
vertex (or bottom in some other cases) facing upward, as 
shown in the fig. 2. 

 

 

Fig. 2 Scheme of triangulation system 

The figure also shows the scheme of the triangulation 
system carried on in order to obtain new equilateral 
triangles from each of the equilateral triangular initial 
faces of the corresponding seed polyhedron. 

The cubic approach doesn’t provide an equilateral-
faced seed polyhedron so this triangulation system can’t 
generate equilateral faces from the original ones, but it 
preserves the similarity between the children triangles and 
the mother one. 

The numbers show the order followed to generate all 
the needed points from the spherical coordinates of the 
points of the original triangular face (1, 7, and 10). 

According to the description of the matrix ORDER and 
looking at the Figure 2, the vectors (1, 2, 3) and (2, 3, 5) 
will be, for example, rows of ORDER. The size of this 
matrix will be n

2
x3, since each one of the n

2
 generated 

faces per original face has three points. Now that it is has 
been set the order in which we must connect the dots to 
create the faces, we proceed to calculate these points, all 
of them contained on the surface of the theoretical sphere 
requested by the user.  

These points, as they are calculated in the order 
specified above, are stored in that order in the matrix TRI. 
To carry out this task it will be loaded the coordinates (R, 
phi, theta) of the points corresponding to the primitive 
faces (4 in case of the tetrahedron) and n

2
 groups of 3 

points corresponding to each face will be calculated and 
stored in the array TRI. To carry out this process it is used 
an auxiliary matrix called TRI1, which only serves to 
accumulate and then transfer new information to TRI, 
without deleting the previous data already stored in it. 
After the creation of the points of a face it will take place 
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the graphic representation of the triangular face, the 
coordinates for the next face will be loaded and it will 
repeat the process with all the primitive faces until the 
representation of the final polyhedron (tetrahedral, cubic, 
octahedral or icosahedral approach) is completed. The 
algorithm for calculating the new sub-faces of each 
original triangular face needs two nested loops that will 
sweep each initial triangle from top to bottom and from left 
to right (fig. 2) by creating new items. 

This algorithm uses the coordinates of the vertices of 
each primitive faces. Since two of these coordinates are 
angular, in certain faces (they could be called "closure 
faces " of the polyhedron, since they use the first and last 
vertices of the same and close it definitely) they coexist 
vertices belonging near-zero angular coordinates but 
positive in any case (first points) with other vertices 
belonging angular coordinates close to 2 * π radians (360 
degrees). In these cases the algorithm could give 
erroneous results, since the calculation of intermediate 
points provide a range of points between 0 and 2 * π 
radians, namely, points distributed throughout the whole 
sphere, without any of them inside the corresponding 
initial face area, as it should be. To fix this possible 
programming error, it comes before implementing the 
algorithm, to approximate the angular coordinates to each 
other as follows: If a parameter is very high (close to 2 * π 
radians) and the other is close to zero it is necessary to 
add 2 * π radians to the lowest one, eliminating the 
problem without changing the physical value of the 
variables.  

After calculating each new array TRI, as mentioned 
above, we proceed to the representation of the triangular 
face that represents, according to the binding order of the 
points specified in the ORDER matrix. For this task and in 
order to reduce the structural complexity of the program, it 
will be programmed a separate function, which is called 
triangles(ORDER, X, Y, Z). This function takes as 
parameters the ORDER matrix and the vectors of 
coordinates of points X, Y and Z. Its only effect is the 
three-dimensional representation in the MATLAB 
environment of the various sub-faces generated from 
each primitive face. The given points in the cartesian 
coordinates vectors will be joined following the order of 
union of the vertices specified in the ORDER matrix.  

Before invoking this new function, the vector of 
Cartesian coordinates X, Y and Z are generated from the 
spherical coordinates of the points contained in the matrix 
TRI. Only a simple conversion from spherical coordinates 
to cartesian coordinates algorithm is needed (remember 

the equations eq. 1, eq. 2, eq. 3; being  the zenithal 

coordinate and  the azimuthal coordinate). After the 
return from the function, writing on the chart is enabled by 
including the command "hold on", which will overlap more 
faces in subsequent loop cycles without removing the 
previous ones or creating a new chart each time. When 
all the iterations of the loop have been done (as many 
iterations as faces of the original polyhedron), the 
command "hold off" is used to disable the writing on the 
current chart and the program ends. 

2.4  Differences between each triangulation 
algorithm 

In the tetrahedral triangulation case it has been 
decided, in order to distinguish this triangulation from the 
other methods and take advantage of the fact that the 
tetrahedron has one side parallel to the ground plane (z = 
0) by placing the corresponding ternary axis 

perpendicular to the ground, not to apply the triangulation 
to the face contained in this plane. This modification 
achieves to guide the project, at least one of its branches, 
to a possible practical application in the design of domes 
or spherical base covers built on a triangular lattice base. 
Due to this change, it varies the size of some of the 
matrices used in the program, as it is evident. The 
tetrahedral triangulation shows a six-planes-of-symmetry 
spherical approach as a result. Each plane is defined by 
each edge and the medium point of the opposite one. This 
result will have 4 * n

2
 faces, being n the accuracy 

parameter described above. 
The fig. 3 shows the result of applying the tetrahedral 

triangulation algorithm to a sphere of one unit of radius. 
The value of the accuracy parameter (n) used in this first 
approach was 6. Another simulation of the same algorithm 
was carried on using a value of 20 for the “n” parameter. 
The result is shown in the fig. 4. 

 

Fig. 3 Tetrahedral triangulation with n=6 

Tetrahedral triangulation of the sphere obtained using 
an accuracy parameter of n = 6 means that each edge of 
the original tetrahedron (inscribed inside the theoretical 
sphere which radius is given) is divided in six new edges, 
generating 36 new triangles per original face. 

 As it was said above, one of the faces is not 
triangulated in the tetrahedral approach, so the final 
number of triangles in the mesh is 108. 

This figure and the rest of approaches to the sphere 
showed below were obtained running the program in the 
MATLAB console. Although the graphic results of the 
simulation come from the MATLAB environment, they are 
only a way to show visually the obtained results (vertices 
of the generated approach) and they can be easily stored 
and showed using any other graphic tool.  

The colour assigned to each face depends on the value 
of the Z coordinate (vertical height): Dark blue is assigned 
to the ones that show a lowest value of the Z coordinate 
and dark red is assigned to the ones that show a highest 
value. Points with a value of the Z coordinate between the 
minimum and the maximum get as colour the result of the 
lineal combination of the extreme colours.  

In tetrahedral triangulation of the sphere obtained using 
an accuracy parameter of n = 20 (as show figure 4), each 
edge of the original tetrahedron is divided in 20 new 
edges, generating 400 new triangles per original face. 
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Fig. 4 Tetrahedral triangulation with n=20 

Only three faces were triangulated, in order to suggest 
a real application in the vault calculus, like in the previous 
simulation result. The final number of triangles in the 
generated mesh is 1200. 

The cubic triangulation produces a spherical approach 
from a cube, so the triangles are not equilateral and a 
lower structural quality approach is obtained. Anyway, it is 
more accurate than the tetrahedral one. This spherical 
approach will have 6 * 4 * n

2
 faces, being n the accuracy 

parameter described above. 
The fig. 5 shows the final polyhedron obtained from the 

application of the cube-derived triangulation algorithm. 
The used value of “n” was also 6 in this first simulation 
and also 20 in the second one, which result is shown in 
the fig. 6. 

 

Fig. 5 Cube-derived triangulation with n=6 

In the approximation obtained from the cube using an 
accuracy parameter of n = 6 (Fig. 5), each edge of the 
polyhedron generated (not edges of the cube) is divided 
in 6 parts, generating 36 new triangles per triangle. It 
produces a quite complete meshing, with 864 generated 
triangles. 

 

Fig. 6 Cube-derived triangulation with n=20 

In the cube-derived triangulation of the sphere obtained 
using an accuracy parameter of n = 20, each edge of the 
polyhedron generated from the cube is divided in 20 parts, 
generating 400 new triangles per original triangle. It 
produces a 9600 triangles mesh. 

The octahedral approach offers a regular structure, 
made from equilateral triangles, with nine symmetry 
planes but a worse mesh density than the cubic one, with 
only 8 * n

2
 faces in the final result. 

The same two values of the “n” parameter were used to 
carry on the simulation of the octahedral triangulation 
algorithm. The obtained result for the n = 6 approach 
appears in the fig. 7. This simulation produces a quite 
regular mesh of 288 triangles.  

 

Fig. 7 Octahedral triangulation with n=6 
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The result for the approach with n = 20 one is shown in 
the fig. 8. This simulation produces a regular mesh of 
3200 triangles. 

 

Fig. 8 Octahedral triangulation with n=20 

Finally, the icosahedral spherical approach is the 
alternative that belong the best characteristics. The result 
has fifteen planes of symmetry and it generates 20 * n

2
 

equilateral faces following a regular icosahedral structure. 
Proceeding like in the previous approaches, the 

icosahedral triangulation one is tested using the same 
values for the “n” parameter. The obtained results of the 
algorithm are graphically represented in the fig. 9 and in 
the fig. 10. 

 

Fig. 9 Icosahedral triangulation with n = 6 

The obtained result in this case is a highly regular 
mesh of 720 triangles. 

 

Fig. 10 Icosahedral triangulation with n = 20 

The result is a highly regular mesh of 8000 triangles. 
A quick comparative overview of the four different 

methods can be obtained easily from the tab. 2. 
 

Triangulation 
method 

Tetrahedral Cubic Octahedral Icosahedral 

Seed body 
vertices 

 4    8+6 6 12 

Seed body 
edges 

 6  12+24    12 30 

Seed body 
faces 

 4    6*4 8 20 

Final 
polyhedron 

faces 
    4*n

2
  24*n

2
    8*n

2
    20*n

2
 

Accuracy     Low   Medium Medium    High 

Mesh 
quality 

Medium    Low Medium    High 

Tab. 2 Relevant data of each triangulation method 

This table shows the number of vertices, edges and 
faces of each seed polyhedron as well as a qualitative 
description of the accuracy of each method and the 
structural quality of the corresponding mesh. 

3 Conclusions 

3.1 Comparison of the geometric regularity 
between the MATLAB “SPHERE” approach and the 
developed approaches 

In order to compare the geometric regularity of the 
different triangulation methods developed and compare it 
to the results obtained for the built-in MATLAB “SPHERE” 
approach the divergence between the longest and the 
shortest edge of each own approach will be calculated. 

Since we would like to get values of that divergences 
for several accuracys (using the number of faces of the 
approach as an accuracy parameter, for example) of each 
approach method, a high-level program will be created, in 
ordre to proccess and show all the divergence data of 
each approach and it’s evolution with the total number of 
faces generated (N

2
). 
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This program will execute one by one all the sub-
programs and obtain the value of the longest and shortest 
edges generated. The geometric divergence of each 
method will be obtained as the difference between both 
parameters. The proccess will be repeated for all the 
wished values of the accuracy parameter. All the obtained 
data will be storaged and showed in a graph in order to 
compare our approaches to the MATLAB one more 
easily. 

The obtained data for several values of the number of 
faces (N

2
, where “N” is not the described accuracy 

parameter but the square root of the total number of 
generated faces, to allow the easy comparison with the 
MATLAB “SPHERE” command obtained results) was 
collected in tab. 3, where the first row contains the data 
related to the tetrahedral approach, the second one refers 
to the cubic-based one, the third one to the octahedral 
approach and the last one to the icosahedral one. 

Tab. 3 shows the results of the spherical approach 
regularity analysis (divergence between edges) applied 
over the MATLAB “SPHERE” algorithm. The values are 
given as multiples of the radius of the original sphere (R). 

  

Tab. 3 Results of the spherical approach regularity  
(divergence between edges) 

A quick view of tab. 1 and tab. 3 shows that even the 
worse triangulation method developed, at least in terms of 
geometric regularity, which is the tetrahedral one, is much 
better than the meshing method used by the MATLAB 
“SPHERE” function. Having a look at the obtained data 
for 50

2
 faces, the MATLAB “SPHERE” approach offers a 

divergence of almost 25%R, meanwhile the tetrahedral 
triangulation reaches a divergence of 8.45%R, the cubic-
based triangulation 7.06%R, the octahedral triangulation 
6.21% and the icosahedral triangulation method is able to 
reduce the divergence below the 5%R. 

The evolution of the divergence increasing the number 
of divisions done in each of the original edges of the seed 
polyhedron (real “n” parameter) for each method is easily 
observable in fig. 11, fig. 12, fig. 13 and fig. 14, which 
show the collected data of the regularity analysis carried 
on for the tetrahedral triangulation method, the cubic-

based triangulation method, the octahedral triangulation 
method and the icosahedral triangulation method, 
respectively.  

 

Fig. 11 Divergence between edges (tetrahedral approach) 

In Fig. 11 we can see the evolution of the divergence 
between edges of the tetrahedral approach by increasing 
the value of the accuracy parameter “n”. The divergence 
(blue line) is the difference between the longest edge (red 
line) and the shortest one (green line). 

 

Fig. 12 Divergence between edges (cubic approach) 

Fig. 12 shows the evolution of the divergence between 
edges of the cubic-based approach by increasing the 
value of the accuracy parameter “n”. The divergence (blue 
line) is the difference between the longest edge (red line) 
and the shortest one (green line). 

 

Fig. 13 Divergence between edges (octahedral approach) 

Fig. 13 shows the evolution of the divergence between 
edges of the octahedral approach by increasing the value 
of the accuracy parameter “n”. The divergence (blue line) 

Faces 
(n

2
) 

Tetrahedral Cubic Octahedral   Icosahedral 

5
2 

0.4494 0.2352 0.1801  0.0171 

10
2
 0.3122 0.2685 0.1924  0.1372 

15
2
 0.2343 0.2019 0.1559  0.1167 

20
2
 0.1821 0.1581 0.1279  0.0979 

25
2
 0.1508 0.1273 0.1089  0.0841 

30
2
 0.1303 0.1075 0.0945  0.0733 

35
2
 0.1147 0.0948 0.0837  0.0652 

40
2
 0.1025 0.0850 0.0748  0.0587 

45
2
 0.0926 0.0771 0.0679  0.0533 

50
2
 0.0845 0.0706 0.0621  0.0490 
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is the difference between the longest edge (red line) and 
the shortest one (green line). 

 

Fig. 14 Divergence between edges (icosahedral approach) 

Fig. 14 shows the evolution of the divergence between 
edges of the icosahedral approach by increasing the 
value of the accuracy parameter “n”. The divergence 
(blue line) is the difference between the longest edge (red 
line) and the shortest one (green line). 

The supremacy of the icosahedral triangulation 
method, according to the geometric regularity, over the 
MATLAB “SPHERE” function and the rest of the 
developed triangulation methods is observable in these 
last figures. The starting value of the divergence is 
extremely low and it falls really fast increasing the value 
of “n” (divisions per edge of the original polyhedron). 

3.2 Comparison between the own algorithms 
and conclusions about future applications  

After to have checked the four algorithms created to 
give a triangular approach to the sphere it is obvious that 
the best results are obtained using the icosahedral 
approach. The accuracy of this triangulation method is 
extremely high using a relatively low number of triangles. 
The generated triangles are equal to each other in almost 
all the cases and the structural regularity of the obtained 
mesh is also the best one. 

This result is easily expected taking into account the 
fact that the icosahedron is the regular polyhedron that 
has the highest number of equilateral triangles as faces 
(20), as the tab. 2 shows. Apart from that, the regular 
distribution of its faces makes the icosahedron probably 
the best seed body to carry on an accurate triangulation 
of the sphere. 

The tetrahedral triangulation method reaches also a 
high accuracy from certain values of the “n” parameter. 
Probably the main problem of this approach is, more than 
the low accuracy for low “n” values, the preservation of 
the three edges of the tetrahedron after the triangulation, 
as circumference arcs over the theoretical spherical 
surface. 

This “problem” could also be an advantage. Despite 
the existence of this phenomena mean, first of all, that the 
triangles close to them are not equals to the rest, it also 
mean that if this model is used to build architectonical 
elements it is highly probably that the rest of the bars of 
the structure discharge their tensions over this other bars. 
In other words, this effect could create three base points 
where the whole weight of the structure and the rest of 
the charges over it will transmit their efforts. Of course 
this effect will depend on the distribution of charges over 
the structure. Anyway, it would allow us to distribute the 

charge over three single points (columns), which is more 
stable than using four or more supporting points. 

The cubic approach generates a higher number of 
triangles than the expected one for a fixed value of “n” 
because each face of the original cube is converted, 
before starting the application of the algorithm, in four 
non- equilateral triangles. The high number of faces 
doesn’t mean a high quality mesh because the cubic base 
and the later adaptation to a triangular-faced polyhedron 
make some convergence points to appear. These points 
are placed in a position corresponding to the centre of 
each cubic face, common point between the transformed 
edges. 

This characteristic can be also used in architectural 
elements design and building because it allows us to build 
semi-spherical domes with four points of tensional 
concentration, where the columns must be placed. 

The octahedral triangulation method offers a better 
approach from the mathematic point of view, eliminating 
divergences between triangles and convergence points. 
The obtained accuracy is higher for the same number of 
faces in the final polyhedron. It’s the second best model, 
after the icosahedral one, of course. 

The icosahedral triangulation algorithm offers the best 
result and it could have thousands of applications, not just 
in the design and development of domes, but in any area 
of the applied sciences where a high accuracy discrete 
model of the sphere is needed. The softness and 
regularity of the obtained result is clear in the fig. 9. The 
accuracy of the approach can be increased as much as 
needed due to the high computational efficiency of the 
generated algorithm. 

The only problem could be the computing time but to 
reach higher than one second computing times it was 
necessary to use values of the accuracy parameter (n) 
around 100. It means 200000 triangles in the icosahedral 
approach final polyhedron. 

It was impossible, for now, to make any of these 
algorithms to fail or break the execution of the program. 
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