

Proceedings of the IMProVe 2011

International conference on Innovative Methods in Product Design

June 15
th
 – 17

th
, 2011, Venice, Italy

Development of an algorithm for a triangular approach to the
sphere based on the Platonic solids using MATLAB scripts.

M. Heredia Conde
(a)

, Manuel Pérez Vázquez
(b)

, José M. Gomis Martí
(c)

(a)
 Engineering Design Department collaborator (University of Vigo - Spain)

(b)
 Engineering Graphics an Design professor (University of Vigo - Spain)

(c)
 Enginering Graphics professor (Polytechnic University of Valencia - Spain)

Article Information

Keywords:
Sphere,
Triangular approach,
Platonic bodies,
MatLab.

Corresponding author:
Manuel Pérez Vázquez
Tel.: +34 677689233
Fax.:+34 986812201
e-mail: maperez@uvigo.es
36201 Vigo (Pontevedra) SPAIN

Abstract

The sphere is a common object in uncountable engineering problems, which not only
appears in structural elements like domes but also in thousands of mechanisms normally
used in diverse kinds of machines. To design, calculate and analyze the behaviour on service
of spherical elements it’s essential to have a good method to create an ordered group of
discrete points of the spherical surface from the parametric equations commonly used to
define the sphere continuously.

One of the best known and widely used in high-level programming environment is
MATLAB. The programming language has thousands of functions, lots of them specially
designed for engineering processes. One of these functions generates a sphere knowing a
given radius and shows the result. Nevertheless, this function is really imprecise because it’s
based on parallels and meridians besides the obtained vertices don’t keep a constant
distance each other. That because it would be appropriate to design a new function to
generate accurate discrete approximations of the sphere.

The objective of this paper is create a low-level function in MATLAB to obtain a discrete
sphere with high regularity and high approximation in order to provide a good base to solve
sphere-based engineering problems. To ensure a perfect symmetry and a high regularity
platonic bodies will be used as a base to divide the continuous spherical surface in a finite
number of regular triangles. The obtained results for the different seed bodies will be
represented graphically and compared to each other. The accuracy of each method will be
evaluated and compared too.

1 Introduction

The objective of this work is to design a program that
allows triangulation of a sphere defined by the value of its
radius (eq. 1, eq. 2, eq. 3; being R the radius of the

sphere, the zenithal coordinate and the azimuthal
coordinate) [1], [2]. The process of triangulation [3], [4]
involves the calculation of new vertices of the polyhedron
which will replace the given sphere, its proper association
forming triangles, which are the faces of the polyhedron,
and finally, the graphic representation in a three-
dimensional environment of those faces, giving rise the
polyhedron result of triangulation, whose vertices have to
meet the necessary condition of being contained in the
initial sphere. According to these last conditions it follows
that for the fulfilment of these objectives the program will
work generating polyhedra inscribed in the given sphere,
discarding the circumscribed polyhedral approach option.

 cossin RX (1)

 sinsin RY (2)

 cos RZ (3)

1.1 State of art

MATLAB provides developers a huge amount of
generic functions, many of them oriented to create and

show three-dimensional surfaces. Between these
functions there is one that allows us to generate a three-
dimensional mesh for the surface of a sphere:
“SPHERE(N)”. This function creates a mesh of the
spherical surface, where the radius of the sphere is one
unit and “N” is the number of divisions in which the vertical
diameter of the sphere is divided by the parallels planes.
So “N” is the number of meridians, or the number of
parallels plus one, used to create the mesh from the
theoretical sphere.

At first one could think that this approach is enough to
cover any kind of need for obtaining a discrete sphere.
The lack of accuracy derived from a low value of the
parameter “N” could be easily solved increasing its value
and, therefore, the computing time. Nevertheless, a
deeper analysis would show that this approach preserves
a sensible difference between the longest and the
shortest edges of the mesh, even increasing the value of
the parameter “N”. This detail could be not so important if
the approach is only used to obtain a three-dimensional
rendering with no further intention but it becomes critical
when the obtained data (points and edges of the result
mesh) are used in engineering calculus like, for example,
resistance of structures.

In order to compare the results of the developed
algorithm with the results offered by the MATLAB built-in
spherical approach the divergence between the shortest
and the longest edge of the approach will be calculated
for several values of the parameter “N”. This divergence
will be used as a measure of the regularity of the
approach.

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

The first step to calculate the shortest and the longest
edges of the mesh is to determine the radius of the
smallest and the biggest parallels (excluding equator) of
the geographic coordinate system (meridians and
parallels) used to divide the sphere. The radius of the
smallest parallels, which are the closest to the poles is
given by the eq. 4, where “R” is the radius of the sphere
and “n” is the number of vertical divisions made by the
parallels.

R
n

n
r

2

2
2

1

 (4)

The radius of the biggest parallels, which are the

closest to the equator, are given by the eq. 5 (if “n” is odd)
and the eq. 6 (if “n” is even), where “R” is the radius of the
sphere and “n” is the number of vertical divisions made by
the parallels.

 R
n

r
2

1
1 (5)

 R
n

r
2

22
1 (6)

The longest edge between the edges that form the

meridians is extracted from the radius of the smallest
parallels and its value is given by the eq.7.

n

R
a

2
 (7)

The shortest edge between the edges of the meridians

is extracted from the radius of the biggest parallels and its
value is given by the eq.8 and the eq. 9, depending on if
“n” is odd or even, respectively

n

R
a

2
 (8)

 R
n

a

2

22
112 (9)

The parallels edges are obviously calculated from the

radius of the corresponding parallels: the longest edge is
obtained from the biggest parallel radius and the shortest
edge is calculated from the smallest parallel radius, both
of them following the eq. 10, where r is the corresponding
radius of the considered parallel.

n
ra

sin2 (10)

Using the obtained equations a complete study of the

edges divergence of the geographic coordinate system-
based MATLAB own spherical approach algorithm is
carried on for several values of the “N” parameter, in

order to obtain solid data based on a commercial solution
to compare our algorithm results with.

The achieved results are shown in the table Tab. 1,
where the first row shows the divergence between edges
of the parallels, the second row shows the divergence
between edges of the meridians and the last row contains
the global divergence of the edges of the approach. Each
column corresponds to a different simulation using a
different value of “N” and, consequently, a different
number of generated faces (N

2
).

Faces (n
2
) Parallels Meridians Global

5
2

0.2114 0.4944 0.7518

10
2
 0.2472 0.4314 0.4314

15
2
 0.2075 0.3831 0.3831

20
2
 0.1764 0.3470 0.3471

25
2
 0.1522 0.3200 0.3200

30
2
 0.1340 0.2984 0.2984

35
2
 0.1195 0.2809 0.2809

40
2
 0.1079 0.2662 0.2672

45
2
 0.0983 0.2537 0.2570

50
2
 0.0904 0.2428 0.2477

Tab. 1 Divergence between edges

The table shows results of the spherical approach
regularity (divergence between edges) analysis applied
over the MATLAB “SPHERE” algorithm. The values are
given as multiples of the radius of the original sphere (R).

The evolution of the global edge divergence obtained
using the MATLAB “SPHERE” algorithm increasing the
value of “N” is our estimator of the regularity of the
approach and is graphically shown in the fig. 1. The
divergence (blue line) is the difference between the
longest edge (red line) and the shortest one (green line).

Fig. 1 Evolution of the divergence between edges by
increasing the value of the parameter “N”.

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

2 Development of the program

2.1 Main structure and basic lines of the
program

In order to achieve the proposed objectives multiple
algorithms [5], [6], [7] can be designed for generating
polyhedral surfaces, starting from different basic
polyhedra. However, if you want to make a high quality
triangulation, namely ensuring that the resulting
polyhedron vertices are evenly distributed across the
surface of the sphere and that the faces of the generated
polyhedron are identical, it is clear that you have to start
to work over a regular polyhedron whose faces are
triangles. Between all the Platonic solids there are three
that meet this condition: the tetrahedron, the octahedron
and the icosahedron, with four, eight and twenty
equilateral triangles respectively. All of them are therefore
valid seed polyhedra to initiate a precise triangulation of
the sphere. Despite not being made up of triangles, the
cube deserves special attention, since it is readily
apparent that if we draw the two diagonals of each of their
faces we get four new triangular faces from each of the
initial square faces. However, it is also seen that to create
a valid and operative seed polyhedron from this cubic
approach it is necessary to move the new vertices
(centres of cube faces) along the perpendicular line to the
face that cut the face of the cube in its centre, until they
meet the cube circumscribed sphere membership
condition. Once we have modified the cube we obtain a
twenty-four non-equilateral triangular faces polyhedron
which is capable of being used as a basis for the
triangulation of the sphere.

Having analyzed the alternatives, we decided to use
the four polyhedra mentioned above to develop four
different models of triangulation of the sphere. Three of
them will generate a net of equilateral triangles: The
tetrahedral triangulation [8], the octahedral triangulation
and the icosahedral triangulation; and the other one will
create a network of non-equilateral triangles derived from
the cube polyhedron described above: Cubic
triangulation.

Each triangulation method need, first at all, to generate
the corresponding seed polyhedron, taking the radius of
the sphere demanded by the user as the only input data.
To generate the tetrahedral seed, inscribed into the
theoretical sphere, it is necessary to use the eq. 4 to
calculate the length of each edge of this regular
polyhedron (a) from the radius of the sphere (R). The
length of each edge of a cube inscribed into a sphere is
given by the eq. 5 and it’s the first data used to create the
cube-derived triangular-faced seed polyhedral. The
octahedral seed can be generated like the tetrahedral one
using the eq. 6 to obtain the proper edge length. Finally
the icosahedral seed is generated in the same way using
the eq. 7 to calculate the corresponding edge value.

 Ra
6

4
 (4)

 Ra
3

2
 (5)

 Ra
2

2
 (6)

 Ra

5210

4
 (7)

Once both the objectives and the modus operandi of

the program are fully defined, it’s necessary to establish
the form that it has to have, in terms of structuring and
encapsulation of the code refers [9], [10], [11]. Since four
tasks are performed in parallel on the same program, a
base program and another four specific sub-programs will
be used. The main program will interact with the user and
will call one of the four sub-programs, which will perform
the necessary calculations and display the final result
obtained, as appropriate to the user's choice.

Once at this point we must define the type of program
that will be obtained after the compilation of the code and
the programming language that will be used to write the
corresponding code. In order to allow the later use of the
generated program as part of medium and high level
engineering programs we decided to adopt as kind of
program the ".m" function type, which corresponds to a
MATLAB own kind of file. MATLAB is a worldwide well-
known computer program for advanced calculation based
on matrices [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21].

The wide use of MATLAB in almost all the branches of
the applied sciences, and even more in the engineering
world, will make possible to include our function in a huge
range of applications. MATLAB also offer us the possibility
of converting the program into an universal C library,
which can be included in any other program. In order to
program this type of executable MATLAB has its own
language and a compiler called "Editor", from which
programs can be written, apart from the command window
itself, or "Command Window", which you can perform any
operation or all of them directly, without creating a
corresponding program in a ".m" file using the editor. In
our case we use the command window only for testing or
simple calculations may be necessary isolated in the
process of project development and eventual debugging.
The necessary software will be developed exclusively as
".m" files using the editor.

In the coming paragraphs we will analyze the base
program and the various sub-programs that are invoked
from it.

2.2 Main program

The base program has only one task: to determine the
approximation of the sphere that the user (or, in its case,
higher level program that calls the function) wants to
perform and to execute the corresponding program for
this approach. To obtain the user’s preferences (if the
function is called from a higher level program the
necessary information will be passed as parameters to the
function), the program prints out a list of the four options
available to the user and urges him to choose one
providing the numeric value associated with it and
corresponding to the order they are listed. Once stored
this value in a variable it is contrasted with the values for
each option to find the selected option. When the user’s
choice is found, the main program calls the program that
performs the chosen spherical approximation and the

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

execution of the main program finishes at the end of the
called subroutine. If the value entered by the user does
not match with any of the options available, the program
will repeat the question until the user gives a coherent
response.

The base program name will be Sphere.m, so to start
running our suite of triangular approximations of the
sphere simply type "Sphere" in the MATLAB command
window after making sure that we are working on the
proper "Current Directory".

The sub used to calculate and graphically display the
different approaches of the sphere will be detailed later
and are the following ones:
- Triangulation_tet.m performs the tetrahedral

triangulation of the sphere.
- Triangulation_cub.m performs the cubic triangulation of

the sphere.
- Triangulation_oct.m performs the octahedral

triangulation of the sphere.
- Triangulation_ico.m performs the icosahedral

triangulation of the sphere. (1)

2.3 Structure of each triangulation of the sphere
algorithm

The first step when we start writing code for any of the
sub files -Triangulation_tet.m, Triangulation_cub.m,
Triangulation_oct.m, Triangulation_ico.m- should be to
delete all the variables that will be used during the
execution of the program, in order to avoid that previous
values interfere giving inconsistent results. In our case,
since the programs do not use any previous variable
stored in the workspace, we decided to delete all of the
variables using the command "clear." This step will
always take place at the beginning of all the sub-
programmes.

Then, it proceeds to ask the user (or higher level
program) for the radius of the sphere whose triangulation
approach he wants to perform and the number of
divisions that will take place, after triangulation, in each of
the edges of the corresponding seed polyhedron
(tetrahedron, cube, octahedron or icosahedron) inscribed
into the sphere which radius was introduced above. Note
that this last value corresponds to the square root of the
number of triangles in which each of the faces of the
inscribed polyhedron is subdivided, that is to say, if you
enter a value "n", n

2
 triangles will be generated for every

initial triangular face. This is a precision parameter of the
approach to be made. A too high value of this parameter
will provide more accurate results but will involve a
greater number of points that may make it harder the
visualization of the 3D generated polyhedron. The
increase in computing time is not significant for
reasonable values of precision. Anyway, the use of the
function in real-time systems or any other kind of high
level programs that require high speed execution would
force us to establish a balance between the accuracy of
our results and the meeting of the real-time requirements.

A POINTS matrix (TET_POINTS, CUB_POINTS,
OCT_POINTS or ICO_POINTS, in each sub) is
constructed with the vertices of the inscribed polyhedron
sorted by rows and expressed in spherical coordinates,
so that the first column contains the radial component, the
second one the azimuthal component and the third one
the zenithal component. These last two coordinates are
given in radians, while the radius is expressed in the
same units used by the user to enter the value.

Then the FACES matrix (TET_FACES, CUB_FACES,
OCT_FACES or ICO_FACES) is generated by combining
the rows of the corresponding POINTS matrix (vertices of
the tetrahedron) in groups of three to form the different
triangular faces (three points each) of the tetrahedron.

Once these matrices are generated, we construct the
ORDER array, which consists of sets of three numbers
that are the indices of three of the points that will be
obtained later, when the division of each triangular face of
the tetrahedron is performed and whose mission is to
define in what order they join the new generated points to
form the new faces. The indices are assigned to each
face from top to bottom and from left to right with the top
vertex (or bottom in some other cases) facing upward, as
shown in the fig. 2.

Fig. 2 Scheme of triangulation system

The figure also shows the scheme of the triangulation
system carried on in order to obtain new equilateral
triangles from each of the equilateral triangular initial
faces of the corresponding seed polyhedron.

The cubic approach doesn’t provide an equilateral-
faced seed polyhedron so this triangulation system can’t
generate equilateral faces from the original ones, but it
preserves the similarity between the children triangles and
the mother one.

The numbers show the order followed to generate all
the needed points from the spherical coordinates of the
points of the original triangular face (1, 7, and 10).

According to the description of the matrix ORDER and
looking at the Figure 2, the vectors (1, 2, 3) and (2, 3, 5)
will be, for example, rows of ORDER. The size of this
matrix will be n

2
x3, since each one of the n

2
 generated

faces per original face has three points. Now that it is has
been set the order in which we must connect the dots to
create the faces, we proceed to calculate these points, all
of them contained on the surface of the theoretical sphere
requested by the user.

These points, as they are calculated in the order
specified above, are stored in that order in the matrix TRI.
To carry out this task it will be loaded the coordinates (R,
phi, theta) of the points corresponding to the primitive
faces (4 in case of the tetrahedron) and n

2
 groups of 3

points corresponding to each face will be calculated and
stored in the array TRI. To carry out this process it is used
an auxiliary matrix called TRI1, which only serves to
accumulate and then transfer new information to TRI,
without deleting the previous data already stored in it.
After the creation of the points of a face it will take place

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

the graphic representation of the triangular face, the
coordinates for the next face will be loaded and it will
repeat the process with all the primitive faces until the
representation of the final polyhedron (tetrahedral, cubic,
octahedral or icosahedral approach) is completed. The
algorithm for calculating the new sub-faces of each
original triangular face needs two nested loops that will
sweep each initial triangle from top to bottom and from left
to right (fig. 2) by creating new items.

This algorithm uses the coordinates of the vertices of
each primitive faces. Since two of these coordinates are
angular, in certain faces (they could be called "closure
faces " of the polyhedron, since they use the first and last
vertices of the same and close it definitely) they coexist
vertices belonging near-zero angular coordinates but
positive in any case (first points) with other vertices
belonging angular coordinates close to 2 * π radians (360
degrees). In these cases the algorithm could give
erroneous results, since the calculation of intermediate
points provide a range of points between 0 and 2 * π
radians, namely, points distributed throughout the whole
sphere, without any of them inside the corresponding
initial face area, as it should be. To fix this possible
programming error, it comes before implementing the
algorithm, to approximate the angular coordinates to each
other as follows: If a parameter is very high (close to 2 * π
radians) and the other is close to zero it is necessary to
add 2 * π radians to the lowest one, eliminating the
problem without changing the physical value of the
variables.

After calculating each new array TRI, as mentioned
above, we proceed to the representation of the triangular
face that represents, according to the binding order of the
points specified in the ORDER matrix. For this task and in
order to reduce the structural complexity of the program, it
will be programmed a separate function, which is called
triangles(ORDER, X, Y, Z). This function takes as
parameters the ORDER matrix and the vectors of
coordinates of points X, Y and Z. Its only effect is the
three-dimensional representation in the MATLAB
environment of the various sub-faces generated from
each primitive face. The given points in the cartesian
coordinates vectors will be joined following the order of
union of the vertices specified in the ORDER matrix.

Before invoking this new function, the vector of
Cartesian coordinates X, Y and Z are generated from the
spherical coordinates of the points contained in the matrix
TRI. Only a simple conversion from spherical coordinates
to cartesian coordinates algorithm is needed (remember

the equations eq. 1, eq. 2, eq. 3; being the zenithal

coordinate and the azimuthal coordinate). After the
return from the function, writing on the chart is enabled by
including the command "hold on", which will overlap more
faces in subsequent loop cycles without removing the
previous ones or creating a new chart each time. When
all the iterations of the loop have been done (as many
iterations as faces of the original polyhedron), the
command "hold off" is used to disable the writing on the
current chart and the program ends.

2.4 Differences between each triangulation
algorithm

In the tetrahedral triangulation case it has been
decided, in order to distinguish this triangulation from the
other methods and take advantage of the fact that the
tetrahedron has one side parallel to the ground plane (z =
0) by placing the corresponding ternary axis

perpendicular to the ground, not to apply the triangulation
to the face contained in this plane. This modification
achieves to guide the project, at least one of its branches,
to a possible practical application in the design of domes
or spherical base covers built on a triangular lattice base.
Due to this change, it varies the size of some of the
matrices used in the program, as it is evident. The
tetrahedral triangulation shows a six-planes-of-symmetry
spherical approach as a result. Each plane is defined by
each edge and the medium point of the opposite one. This
result will have 4 * n

2
 faces, being n the accuracy

parameter described above.
The fig. 3 shows the result of applying the tetrahedral

triangulation algorithm to a sphere of one unit of radius.
The value of the accuracy parameter (n) used in this first
approach was 6. Another simulation of the same algorithm
was carried on using a value of 20 for the “n” parameter.
The result is shown in the fig. 4.

Fig. 3 Tetrahedral triangulation with n=6

Tetrahedral triangulation of the sphere obtained using
an accuracy parameter of n = 6 means that each edge of
the original tetrahedron (inscribed inside the theoretical
sphere which radius is given) is divided in six new edges,
generating 36 new triangles per original face.

 As it was said above, one of the faces is not
triangulated in the tetrahedral approach, so the final
number of triangles in the mesh is 108.

This figure and the rest of approaches to the sphere
showed below were obtained running the program in the
MATLAB console. Although the graphic results of the
simulation come from the MATLAB environment, they are
only a way to show visually the obtained results (vertices
of the generated approach) and they can be easily stored
and showed using any other graphic tool.

The colour assigned to each face depends on the value
of the Z coordinate (vertical height): Dark blue is assigned
to the ones that show a lowest value of the Z coordinate
and dark red is assigned to the ones that show a highest
value. Points with a value of the Z coordinate between the
minimum and the maximum get as colour the result of the
lineal combination of the extreme colours.

In tetrahedral triangulation of the sphere obtained using
an accuracy parameter of n = 20 (as show figure 4), each
edge of the original tetrahedron is divided in 20 new
edges, generating 400 new triangles per original face.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-0.5

0

0.5

1

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

Fig. 4 Tetrahedral triangulation with n=20

Only three faces were triangulated, in order to suggest
a real application in the vault calculus, like in the previous
simulation result. The final number of triangles in the
generated mesh is 1200.

The cubic triangulation produces a spherical approach
from a cube, so the triangles are not equilateral and a
lower structural quality approach is obtained. Anyway, it is
more accurate than the tetrahedral one. This spherical
approach will have 6 * 4 * n

2
 faces, being n the accuracy

parameter described above.
The fig. 5 shows the final polyhedron obtained from the

application of the cube-derived triangulation algorithm.
The used value of “n” was also 6 in this first simulation
and also 20 in the second one, which result is shown in
the fig. 6.

Fig. 5 Cube-derived triangulation with n=6

In the approximation obtained from the cube using an
accuracy parameter of n = 6 (Fig. 5), each edge of the
polyhedron generated (not edges of the cube) is divided
in 6 parts, generating 36 new triangles per triangle. It
produces a quite complete meshing, with 864 generated
triangles.

Fig. 6 Cube-derived triangulation with n=20

In the cube-derived triangulation of the sphere obtained
using an accuracy parameter of n = 20, each edge of the
polyhedron generated from the cube is divided in 20 parts,
generating 400 new triangles per original triangle. It
produces a 9600 triangles mesh.

The octahedral approach offers a regular structure,
made from equilateral triangles, with nine symmetry
planes but a worse mesh density than the cubic one, with
only 8 * n

2
 faces in the final result.

The same two values of the “n” parameter were used to
carry on the simulation of the octahedral triangulation
algorithm. The obtained result for the n = 6 approach
appears in the fig. 7. This simulation produces a quite
regular mesh of 288 triangles.

Fig. 7 Octahedral triangulation with n=6

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-0.5

0

0.5

1

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

The result for the approach with n = 20 one is shown in
the fig. 8. This simulation produces a regular mesh of
3200 triangles.

Fig. 8 Octahedral triangulation with n=20

Finally, the icosahedral spherical approach is the
alternative that belong the best characteristics. The result
has fifteen planes of symmetry and it generates 20 * n

2

equilateral faces following a regular icosahedral structure.
Proceeding like in the previous approaches, the

icosahedral triangulation one is tested using the same
values for the “n” parameter. The obtained results of the
algorithm are graphically represented in the fig. 9 and in
the fig. 10.

Fig. 9 Icosahedral triangulation with n = 6

The obtained result in this case is a highly regular
mesh of 720 triangles.

Fig. 10 Icosahedral triangulation with n = 20

The result is a highly regular mesh of 8000 triangles.
A quick comparative overview of the four different

methods can be obtained easily from the tab. 2.

Triangulation
method

Tetrahedral Cubic Octahedral Icosahedral

Seed body
vertices

 4 8+6 6 12

Seed body
edges

 6 12+24 12 30

Seed body
faces

 4 6*4 8 20

Final
polyhedron

faces
 4*n

2
 24*n

2
 8*n

2
 20*n

2

Accuracy Low Medium Medium High

Mesh
quality

Medium Low Medium High

Tab. 2 Relevant data of each triangulation method

This table shows the number of vertices, edges and
faces of each seed polyhedron as well as a qualitative
description of the accuracy of each method and the
structural quality of the corresponding mesh.

3 Conclusions

3.1 Comparison of the geometric regularity
between the MATLAB “SPHERE” approach and the
developed approaches

In order to compare the geometric regularity of the
different triangulation methods developed and compare it
to the results obtained for the built-in MATLAB “SPHERE”
approach the divergence between the longest and the
shortest edge of each own approach will be calculated.

Since we would like to get values of that divergences
for several accuracys (using the number of faces of the
approach as an accuracy parameter, for example) of each
approach method, a high-level program will be created, in
ordre to proccess and show all the divergence data of
each approach and it’s evolution with the total number of
faces generated (N

2
).

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

This program will execute one by one all the sub-
programs and obtain the value of the longest and shortest
edges generated. The geometric divergence of each
method will be obtained as the difference between both
parameters. The proccess will be repeated for all the
wished values of the accuracy parameter. All the obtained
data will be storaged and showed in a graph in order to
compare our approaches to the MATLAB one more
easily.

The obtained data for several values of the number of
faces (N

2
, where “N” is not the described accuracy

parameter but the square root of the total number of
generated faces, to allow the easy comparison with the
MATLAB “SPHERE” command obtained results) was
collected in tab. 3, where the first row contains the data
related to the tetrahedral approach, the second one refers
to the cubic-based one, the third one to the octahedral
approach and the last one to the icosahedral one.

Tab. 3 shows the results of the spherical approach
regularity analysis (divergence between edges) applied
over the MATLAB “SPHERE” algorithm. The values are
given as multiples of the radius of the original sphere (R).

Tab. 3 Results of the spherical approach regularity
(divergence between edges)

A quick view of tab. 1 and tab. 3 shows that even the
worse triangulation method developed, at least in terms of
geometric regularity, which is the tetrahedral one, is much
better than the meshing method used by the MATLAB
“SPHERE” function. Having a look at the obtained data
for 50

2
 faces, the MATLAB “SPHERE” approach offers a

divergence of almost 25%R, meanwhile the tetrahedral
triangulation reaches a divergence of 8.45%R, the cubic-
based triangulation 7.06%R, the octahedral triangulation
6.21% and the icosahedral triangulation method is able to
reduce the divergence below the 5%R.

The evolution of the divergence increasing the number
of divisions done in each of the original edges of the seed
polyhedron (real “n” parameter) for each method is easily
observable in fig. 11, fig. 12, fig. 13 and fig. 14, which
show the collected data of the regularity analysis carried
on for the tetrahedral triangulation method, the cubic-

based triangulation method, the octahedral triangulation
method and the icosahedral triangulation method,
respectively.

Fig. 11 Divergence between edges (tetrahedral approach)

In Fig. 11 we can see the evolution of the divergence
between edges of the tetrahedral approach by increasing
the value of the accuracy parameter “n”. The divergence
(blue line) is the difference between the longest edge (red
line) and the shortest one (green line).

Fig. 12 Divergence between edges (cubic approach)

Fig. 12 shows the evolution of the divergence between
edges of the cubic-based approach by increasing the
value of the accuracy parameter “n”. The divergence (blue
line) is the difference between the longest edge (red line)
and the shortest one (green line).

Fig. 13 Divergence between edges (octahedral approach)

Fig. 13 shows the evolution of the divergence between
edges of the octahedral approach by increasing the value
of the accuracy parameter “n”. The divergence (blue line)

Faces
(n

2
)

Tetrahedral Cubic Octahedral Icosahedral

5
2

0.4494 0.2352 0.1801 0.0171

10
2
 0.3122 0.2685 0.1924 0.1372

15
2
 0.2343 0.2019 0.1559 0.1167

20
2
 0.1821 0.1581 0.1279 0.0979

25
2
 0.1508 0.1273 0.1089 0.0841

30
2
 0.1303 0.1075 0.0945 0.0733

35
2
 0.1147 0.0948 0.0837 0.0652

40
2
 0.1025 0.0850 0.0748 0.0587

45
2
 0.0926 0.0771 0.0679 0.0533

50
2
 0.0845 0.0706 0.0621 0.0490

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

is the difference between the longest edge (red line) and
the shortest one (green line).

Fig. 14 Divergence between edges (icosahedral approach)

Fig. 14 shows the evolution of the divergence between
edges of the icosahedral approach by increasing the
value of the accuracy parameter “n”. The divergence
(blue line) is the difference between the longest edge (red
line) and the shortest one (green line).

The supremacy of the icosahedral triangulation
method, according to the geometric regularity, over the
MATLAB “SPHERE” function and the rest of the
developed triangulation methods is observable in these
last figures. The starting value of the divergence is
extremely low and it falls really fast increasing the value
of “n” (divisions per edge of the original polyhedron).

3.2 Comparison between the own algorithms
and conclusions about future applications

After to have checked the four algorithms created to
give a triangular approach to the sphere it is obvious that
the best results are obtained using the icosahedral
approach. The accuracy of this triangulation method is
extremely high using a relatively low number of triangles.
The generated triangles are equal to each other in almost
all the cases and the structural regularity of the obtained
mesh is also the best one.

This result is easily expected taking into account the
fact that the icosahedron is the regular polyhedron that
has the highest number of equilateral triangles as faces
(20), as the tab. 2 shows. Apart from that, the regular
distribution of its faces makes the icosahedron probably
the best seed body to carry on an accurate triangulation
of the sphere.

The tetrahedral triangulation method reaches also a
high accuracy from certain values of the “n” parameter.
Probably the main problem of this approach is, more than
the low accuracy for low “n” values, the preservation of
the three edges of the tetrahedron after the triangulation,
as circumference arcs over the theoretical spherical
surface.

This “problem” could also be an advantage. Despite
the existence of this phenomena mean, first of all, that the
triangles close to them are not equals to the rest, it also
mean that if this model is used to build architectonical
elements it is highly probably that the rest of the bars of
the structure discharge their tensions over this other bars.
In other words, this effect could create three base points
where the whole weight of the structure and the rest of
the charges over it will transmit their efforts. Of course
this effect will depend on the distribution of charges over
the structure. Anyway, it would allow us to distribute the

charge over three single points (columns), which is more
stable than using four or more supporting points.

The cubic approach generates a higher number of
triangles than the expected one for a fixed value of “n”
because each face of the original cube is converted,
before starting the application of the algorithm, in four
non- equilateral triangles. The high number of faces
doesn’t mean a high quality mesh because the cubic base
and the later adaptation to a triangular-faced polyhedron
make some convergence points to appear. These points
are placed in a position corresponding to the centre of
each cubic face, common point between the transformed
edges.

This characteristic can be also used in architectural
elements design and building because it allows us to build
semi-spherical domes with four points of tensional
concentration, where the columns must be placed.

The octahedral triangulation method offers a better
approach from the mathematic point of view, eliminating
divergences between triangles and convergence points.
The obtained accuracy is higher for the same number of
faces in the final polyhedron. It’s the second best model,
after the icosahedral one, of course.

The icosahedral triangulation algorithm offers the best
result and it could have thousands of applications, not just
in the design and development of domes, but in any area
of the applied sciences where a high accuracy discrete
model of the sphere is needed. The softness and
regularity of the obtained result is clear in the fig. 9. The
accuracy of the approach can be increased as much as
needed due to the high computational efficiency of the
generated algorithm.

The only problem could be the computing time but to
reach higher than one second computing times it was
necessary to use values of the accuracy parameter (n)
around 100. It means 200000 triangles in the icosahedral
approach final polyhedron.

It was impossible, for now, to make any of these
algorithms to fail or break the execution of the program.

Acknowledgement

To colleagues of Graphic Expression in Engineering,
always willing to cooperate selflessly.

References

[1] M. Berger. The space of spheres. In Geometry I,
Springer 1987, pp 349-361.
[2] P.M.M. De Castro, F. Cazals, S. Loriot, M. Teillaud.
3D spherical geometry kernel. CGAL User and Reference
Manual. CGAL Editorial Board, 3.5 edn. 2009.
[3] M. Caroli, M. Teillaud. Computing 3D periodic
triangulations. ESA, 2009.
[4] S. Pion, M. Teillaud. 3D triangulations. CGAL User
and Reference Manual. CGAL Editorial Board (ed.), 3.5
edn. 2009.
[5] Library for Efficient Data Types and Algorithms (Leda)
website. http://www.algorithmic-solutions.com/enleda.htm
Accessed 19 Mar 2010.
[6] J.D. Boissonnat, M. Yvinec. Algorithmic
Geometry. Cambridge University Press, UK, 1998.
[7] K.Q. Brown. Geometric transforms for fast geometric
algorithms. Report CMU-CS-80-101, Dept. Comput. Sci.,
Ph.D. thesis, Carnegie-Mellon Univ. Pittsburgh, PA.
1980.
[8] S.L. Chan, E.O. Purisima. A new tetrahedral
tesselation scheme for isosurface generation. Computers

http://www.algorithmic-solutions.com/enleda.htm

M. Pérez et al. Development of an algorithm for a triangular approach to the sphere.

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

& Graphics, Volume 22, Issue 1, 25 February 1998, pp
83-90.
[9] D. Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM Computing
Surveys, 23 (1), pp 5-48. 1991.
[10] C. Li, S. Pion, C.K. Yap. Recent progress in exact
geometric computation. Journal of Logic and Algebraic

Programming, 64 (1), pp 85-111. 2005.
[11] C.K. Yap, T. Dubé, The exact computation
paradigm. Computing in Euclidean Geometry, 4, pp 452-
492. 1995.
[12] F. Haußer, Y. Luchko. Mathematische Modellierung
mit MATLAB: Eine praxisorientierte Einführung. Spektrum
Akademischer Verlag Heidelberg, 2011.
[13] A. Gilat, V. Subramaniam. Numerical Methods for
Engineers and Scientists: An Introduction with
Applications Using MATLAB, 2e. John Wiley & Sons, Inc.
2011.
[14] W. Peng. Efficient Programming Techniques and
Applications in MATLAB: 25 Case Studies. BUAA Press,
2010.
[15] C. F. Van Loan, K.-Y. Daisy Fan. Insight Through
Computing: A MATLAB Introduction to Computational
Science and Engineering. SIAM, 2010.
[16] V. Rovenski. Modeling of Curves and Surfaces with
MATLAB. Springer, 2010.
[17] I. Danaila, P. Joly, M. Postel, S. Mahmoud Kaber.
An Introduction to Scientific Computing: Twelve
Computational Projects Solved with MATLAB. Springer,
2007.
[18] A. Quarteroni, F. Saleri. Cálculo Científico con
MATLAB y Octave. Springer, 2007.
[19] G. Strang. Computational Science and Engineering.
Wellesley-Cambridge Press, 2007.
[20] G. Gan, C. Ma, J. Wu. Data Clustering: Theory,
Algorithms, and Applications. SIAM, 2007.
[21] M. C. Ferris, O. L. Mangasarian, S. J. Wright. Linear
Programming with MATLAB. SIAM 2007.

