

Proceedings of the IMProVe 2011

International conference on Innovative Methods in Product Design

June 15
th
 – 17

th
, 2011, Venice, Italy

A fast algorithm for manifold reconstruction of surfaces

L. Di Angelo
(a)

, L. Giaccari
(a)

(a)
Department of Industrial Engineering, University of L‟Aquila, Italy

Article Information

Keywords:
Surface reconstruction
triangular meshes,
reverse engineering.

Corresponding author:
Luca Di Angelo
Tel: 00390862434310
e-mail: luca.diangelo @univaq.it
Address: Via G. Gronchi 18,
L’Aquila, Italy

Abstract

Purpose:
In a previous paper these authors presented a new mesh-growing approach based on the
Gabriel 2 – Simplex (G2S) criterion. If compared with the Cocone family and the Ball Pivoting
methods, G2S demonstrated to be competitive in terms of tessellation rate, quality of the
generated triangles and defectiveness produced when the surface to be reconstructed was
locally flat. Nonetheless, its major limitation was that, in the presence of a mesh which was
locally non – flat or which was not sufficiently sampled, the method was less robust and holes
and non – manifold vertices were generated. In order to overcome these limitations, in this
paper, the performance of the G2S mesh-growing method is fully improved in terms of
robustness.

Method:
For this purpose, an original priority queue for the driving of the front growth and a post
processing to efficiently erase the non–manifold vertices are proposed.

Result:
The performance of the new version of the G2S approach has been compared with that of the
old one, and that of the Cocone family and the Ball Pivoting methods in the tessellation of
some benchmark point clouds and artificially noised test cases. The results derived from
these experiments show that the improvements being proposed and implemented prevent the
generation of non–manifold vertices and render the new version more robust than the old
one. This performance improvement is achieved by a small reduction of the tessellation rate
as opposed to the old version; the rate is still, however, at least an order of magnitude higher
than the other methods here considered (the Cocone family and the Ball Pivoting methods).

Discussion & Conclusion:
The results obtained show that the use of the new version of G2S is advantageous, as
opposed to the other methods here considered, even in the case of noised point clouds. In
fact, since it does not perform the smoothing of points, not even in the presence of very
noised meshes, the new version of G2S, while producing more holes than the Robust
Cocone and the Ball Pivoting, nonetheless manages to preserve the manifoldness and
important details of the object.

1 Introduction

The process of constructing a triangular mesh from a
point cloud which has been acquired from a 3D real
object is known as surface tessellation or reconstruction.
The applications of triangular meshing of 3D point clouds
are wide–ranging and include Reverse Engineering,
Collaborative Design, Inspection, Computer Vision,
Dissemination of Museum artefacts, Medicine, Special
Effects, Games and Virtual Worlds. In many of the
previously mentioned applications, robustness, reliability
and triangulation speed are important factors that are
required in any tessellation method.
For the last few years the 3D scanning system has been
offering high resolutions with a measuring accuracy as
high as 10 μm, which, on the one hand, make it possible
to capture the smallest surface features but, on the other
hand, generate very large data sets. When analysing the
related literature, it is evident that faster, more reliable
and robust methods have a triangulation speed below
50K triangles per second with the typical computing
power. This speed may not be enough in the tessellation

of a cloud with over one million points. Furthermore, by
analysing the peak memory usage of these algorithms, it
is clear that most of them cannot be run on personal
computers.
These authors have recently proposed a new mesh-
growing method based on the Gabriel 2 – Simplex (G2S)
criterion. The results obtained are very promising since
they demonstrate that this method makes it possible to
tessellate quickly clouds with over one million points even
by using a laptop. Its major limitation is however that, in
the presence of a mesh which is locally non–flat or which
is not sufficiently sampled, the method is less robust and
therefore holes and non–manifold vertices are generated.
We should bear in mind the fact that the mesh may be
unusable without the deletion of this kind of vertices,
which has to be carried out without compromising the
areas which have been correctly reconstructed.
In order to overcome these limitations, and as it is going
to be shown in this paper, the performance of the G2S
mesh-growing method is fully improved in terms of
robustness. To this end, an original priority queue for the
driving of the front growth and a post-processing to
efficiently erase the non–manifold vertices are proposed.

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

The improved method has been tested for the tessellation
of some benchmark point clouds and artificially noised
test cases. The results derived from these experiments
are critically discussed hereinafter.

2 Related works

It is on account of the importance of the problem referred
to that numerous algorithms to tessellate point clouds are
presented in literature. The more recent exhaustive
overviews of 3D surface reconstruction methods are
presented in [1] and [2]. Surface reconstruction algorithms
are generally divided into two categories: implicit and
explicit.

2.1 Implicit methods
Implicit methods attempt to reconstruct an implicit function
f(p)=0, where p is either the whole point cloud or only a

part of it. The final triangulation is obtained by extracting
the isosurface for the f(p)=0. The most common methods

define the implicit function as:

- the sum of radial basis functions (RBF) centred at the
points [3], [4];

- a set of constraints that force the function to assume
given values at the sample points and also force its
upward gradient to match the assigned normals at
the sample points (Moving Least Squares) [5], [6];

- a Poisson problem [7].
These implicit methods carry out a watertight surface
reconstruction also in the case of sparse and noised data.
However, these methods may generally require many
computations and, sometimes, they may even need the
surface normal at each data point. Moreover, the triangles
of the final surface may not pass through all the points,
and this in turn may imply the loss of some details of the
shape of the original model. The more points we use to
compute the implicit function, the higher will be the fitting
accuracy and the longer will be the computation time.

2.2 Explicit methods
Explicit methods attempt to triangulate the points directly.
In contrast with implicit methods, they are less robust
against noise but they are generally faster. The most
common explicit methods can be classified into two main
groups: Voronoi/Delaunay-based and mesh growing
approaches.

2.2.1 Voronoi/Delaunay-based methods

The first group includes algorithms that compute a volume
tetrahedralisation by a 3D Delaunay triangulation of the
sample points. The most important methods presented in
the related literature ([8], [9], [10], [11], [12], [13] and [14])
essentially differ in the way of removing the tetrahedra
and building the external triangular mesh. These
approaches often provide theoretical guarantees of a
good reconstruction as the sampling density increases.
Gopi and al. in [15] proposed a different approach which,
for each sample point, provides the projection of the
neighbouring points onto the approximating tangent plane
and the tessellation of the projections by means of a 2-D
Delaunay triangulation. The 2D edges obtained are then
applied to 3D space.

2.2.2 Mesh growing – based methods

The mesh-growing approaches generate the tessellated
surface from a seed triangle and grow the meshed area
pushing the fronts ahead by using some criteria. For the
last few years a number of algorithms have been

presented. Thus Bernardini et al. [17] introduced the Ball
Pivoting algorithm, whose front grows as a ball of user-
defined radius pivots around the front edge. When the ball
touches three points a new triangle is formed. Generally
speaking, this method affords a correct triangulation for a
uniform data point, which is also noised, but which does
not have concave sharp features. Huang and Menq in [18]
proposed an algorithm which, for each front edge, projects
the k nearest points of two endpoints onto the plane that
is defined by the triangle adjacent to the front edge. Any
point generating triangles whose edges intersect edges of
already existing triangles is discarded. Among the points
which are retained, the point showing the minimum sum of
distances from the front edge endpoints is chosen.
Nonetheless, and as pointed out by Lin et al. in [19], this
algorithm presents some shortcomings. In order to
overcome them, Lin et al. in [19] introduced the Intrinsic
Property Driven (IPD) algorithm, which improves the way
of searching for the point to be triangulated. As stated by
Chang at al. in [2], all the methods based on mesh
growing approaches are fast, efficient and simple to
implement but they, however, fall short whenever two
surfaces are either close together or near sharp features.
More recently, Li et al. in [1] proposed a method based on
a Priority Driven approach that evaluates shape changes
from an estimation of the original surface that is made at
the front of the mesh-growing area. The experimental
results in [1] evidenced that the triangulation speed of this
method is higher than that of Ball Pivoting and Cocone.
However, no reckoning is made of the defectiveness it
generates. Finally, in [20] these authors put forth a new
mesh growing approach based on the Gabriel 2 – Simplex
(G2S) criterion: A triangle is a G2S if its smallest
circumscribing ball is empty.

3 The Gabriel 2 – simplex criterion
based method

The algorithm presented in [20] can be summarised in the
following steps:

- Import of the point cloud;

- Building of a specific data structure to speed up the
nearest point search;

- Seed triangle search;

- G2S criterion based triangulation.
The first step entails importing the point cloud, which
pertains to a continuous surface, in the form of the
coordinates x, y, z. Each point of the point cloud is kept in
a hash table data structure for both point indexing and
nearest neighbour searching. In the proposed algorithm
the data structure used is an improvement of those
proposed by Hoppe et al. in [21] and Turk et al. in [22].

3.1 Selection of the seed triangle
In order to select an appropriate seed triangle, a new
method is employed. First of all, it makes a random choice
of a point from the cloud. Then, its nearest neighbour
point is searched for, and an edge is formed between
these two points. A range search is performed inside a
sphere which is centred at the midpoint of the edge and
whose radius is k – times the length of the edge. For
every point in the range, the method manages to build a
triangle that is formed by the edge and the concerning
point. That triangle is selected as seed if it is G2S and if
the points contained in an infinite cylinder passing through
the triangle vertices and having its axis parallel to the
normal of the triangle are either all above or all under the
triangle. This procedure is repeated until a triangle

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

satisfying the two previously mentioned conditions is
found.

3.2 G2S criterion based triangulation
The edges of the seed triangle constitute the initial
advancing front of the growing-mesh method. For each
free edge (ef) (which are edges pertaining to only one

triangle) of the growing front a triangle is generated
according to the following procedure. Firstly, the
candidate points near ef are identified as those inside a
sphere having its centre on the axis of the free edge
which lie on the plane of the front triangle, in the growing
direction, and having a radius equal to the free edge’s
length (figure 1). If no points are found inside the search
region, the free edge is classified as boundary edge.
When more than one point is inside the search region

(cp1, cp2 and cp3 in figure 2a)), a point is randomly
chosen (cp2 in figure 2b)) and the smallest sphere

circumscribing that point and the front edge‟s points is
constructed (the first search sphere in figure 2b). Then, if
this sphere is not empty (cp1 and cp3 in figure 2c),
another point inside the region is picked (cp3) and the
procedure is repeated (the second search sphere in figure
2c)). The process ends when the sphere passing through
the chosen reference point and the extremes of ef is

empty. The triangle defined by the front edge and the
reference point is a candidate triangle which needs to be
verified in the next step (figure 2d)).

Fig. 1 The search region’s definition terms

Fig. 2 Explanation of the strategy for the selection of a reference point with a view perpendicular to the front triangle

cp1

cp2

cp3

search region’s

centre
search region

front triangle

front edge

a)

cp1

cp2

cp3

first search sphere

b)

cp1

cp2

cp3

second search sphere
c)

candidate triangle

cp1

cp2

cp3

d)

search region’s

centre

search region’s

centre

search region’s

centre

Extreme points of the front edge

 Candidate points

Outer points

Search region

Front edge
Front triangle

Search region’s

centre

Search region’s

radius

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

In order to speed up the triangulation process, if only one
point is found inside the search region, that point
identifies a candidate triangle with the free edge (ef)
without verifying whether or not it is a G2S. If no point is
found inside the search region, ef is removed from the

front queue. Each of the new triangles retained is formed
by the front edge (ef) and two further edges (e1 and e2). In
order to check efficiently whether these two edges (e1 and
e2) are really new or they already belong to other

triangles, a data structure called Point Edge Map (PEM) is
proposed which relates every point to its edges. For either
edge (e1 and e2), the following conditions should be

verified:

- If the edge already pertains to another triangle, the
consistency of the orientation of the new triangle with
the triangle sharing the edge must be verified.

- If this edge is new, it is added to the Point Edge Map
and to the front queue and ef is removed from the

front queue.
The procedure ends when the free edges‟ queue is
empty.
The theoretical basis of G2S is taken for granted by
accepting the fact that point clouds can be considered
locally flat, or, in other words, that the surface to be
reconstructed is locally oriented, smooth, manifold, well
sampled and not self-intersecting. Under this hypothesis,
the G2S criterion works like a 2D Delaunay tessellation
through which surface reconstruction is guaranteed.
These requirements are not so restrictive anymore,
especially since the advent of high-resolution non–contact
scanners which produce noise-free points clouds. More
generally, as pointed out by Dyer et al. in [23], a Gabriel
mesh (a mesh for which each triangle verifies the G2S
criterion) is a Delaunay mesh. In [20] these authors
already demonstrated it by analysing the typical
benchmarks presented in the related literature:

- the triangulation speed of G2S is comparable with a
traditional 2D Delaunay-based mesher and it is at
least an order of magnitude higher than the other
methods here considered;

- G2S produces triangles whose quality is similar to
that of those triangles obtained by the Cocone
methods and slightly better than the quality of the
triangles obtained by the Ball Pivoting one;

- G2S can reproduce even the smallest details of well
sampled surfaces, similarly to Cocone methods, also
in concave areas of strongly non–uniform point
clouds where the Ball Pivoting method shows some
problems;

- G2S does not produce non–manifold edges, self
intersecting triangles or slivers;

- as regards non–manifold vertices, holes and
boundary edges, the quantity and the extension of
defectiveness generated by the G2S tessellation are
on average similar to those produced by the Cocone
and the Tight Cocone;

- in the presence of a mesh which is locally non–flat or
which is not sufficiently sampled, G2S is less robust
and holes and non–manifold vertices are generated.

4 Critical aspects in the G2S method
and improvements

As mentioned in the previous section, the G2S version
proposed in [20] presents some critical aspects. In
particular, in any area of a point cloud that is not locally
flat or is not sufficiently sampled, G2S can generate:

- holes, which identify unmeshed area;

- non–manifold vertices, which are vertices for which
the incident triangles form more than one fan (see
figure 3);

- a twisting of the surface.
This paper focuses on the improvement of the G2S
performance as regards the generation of non–manifold
vertices and twisted surfaces.

4.1 Non – manifold vertices
In figure 3, the non–manifold vertex (v) is classified as

type I if at least one fan is complete (figure 3a), and type II
otherwise (figure 3b). In what follows, the triangles with at
least one boundary edge are referred to as boundary
triangles. In order to automatically remove the triangles

(depicted in red in the figure) which make the vertex non–
manifold, in this paper a post–processing approach is
proposed. This approach is based on a data structure that
takes advantage of the fact that adjacent triangles have a
congruent orientation and consists of:

- the dynamic_edge_queue that initially has ne rows (ne
is the number of edges that are not boundary) and six
columns: edge_label (el), first_point (pf), last_point
(pl), first_triangle (tf) and last_triangle (tl);

- the matrix point_to_triangles constituted by nv rows
(nv is the number of vertices) and four columns:
vertex_label (vl), first_triangle_of_loop (front),
last_triangle_of_loop (back) and nt,a (which is the
number of triangles added in the loop).

Fig. 3 Types of non – manifold vertices

In order to explain the method here presented, let us
consider the mesh depicted in figure 4a with the labels of
the vertices, edges and triangles superimposed. First, the
dynamic_edge_queue is filled with the edges of the mesh,

except for the boundary ones (figure 4b) and in the
point_to_triangles table, the labels of all vertices are
added to the first column (figure 4c). The process starts
by popping the first element off the queue (e3) and the

a)

v

v

b)

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

corresponding labels of tf (t1) and tl (t2) are added to the

related lines of the matrix (figure 4d). Then, the first
element of the new queue (figure 4e) is popped off (e6).
Since the triangles‟ labels associated with v1 for e6 (t3 and
t8) are different from those reported in the corresponding

row of the matrix, this edge is pushed to the front of the
queue (figure 4f). If once the queue has been scanned
through, no edges of intersection of one of two extreme
triangles of the loop (t1 and t2) have been found for the
vertex under examination (v1), the loop is defined as open
since tf ≠ tl. In the case that there are other edges incident
to v1 in the queue, v1 is non–manifold of type II and the

triangles of the loop are erased (figure 4g). Again, the first
element of the queue is popped off (e8); the triangles t1
and t6 are added to the corresponding rows of the matrix
of the vertices v1 and v6 (figure 4h). Once more, the first
element of the new queue (figure 4i) is popped off (e9).
Since one of the two triangles incident to the edge (t4) is a

terminal point (front) of the loop, in the corresponding row
of point_to_triangles, this triangle is substituted with the
other (t3) (figure 4l). This procedure is iterated until the

triangles of the front and the back column are the same
for a vertex (figure 4m), or, in other words, the loop is
closed; in the case that in the dynamic_edge_queue there
are edges incident to that vertex (figure 4n), the vertex v

is non–manifold of type II; these edges and the
corresponding triangles are erased (figure 4o). The
procedure ends when the dynamic_edge_queue is empty.

4.2 The twisting of the surface
In this paper, the twisting of the surface identifies the
generation on the same body of different tessellated
surfaces not having congruent normals (figure 5). This in
turn generates holes with extended boundary edges since
adjacent patches not having a congruent orientation
cannot be merged. In order to solve this problem, an
original priority queue is proposed. The main idea at the

basis of the priority approach being presented is to mesh
first those areas for which the front grows in the flattest
way in the neighbourhood.
Since a priority queue based on a continuous priority
value can really slow down the algorithm, a set of discrete
priority values is adopted. The strategy used involves the
definition of n priority levels for the search region radius
(the smallest radius having priority 1 and the greatest one
having priority n) and m priority levels for the flatness,
measured as the angle (β) between the normal of the
front triangle and the candidate triangle (the highest
priority being assigned to β=0° and the lowest to β=180°).

Since experience shows that the radius of the search
region mainly affects a good reconstruction, the priority
value (PV) is defined according to the following
expression:
 PV = m ·(plr – 1) + plf (1)
where plr is the priority level of the search region radius
(from 1 to n) and plf is the priority level of the flatness
(from 1 to m). At the beginning all the edges in the free
queue start with PV = 1 (maximum value of the priority).
Then, these edges are positioned in the queue by sorting
in ascending order the value of PV calculated for the
corresponding candidate triangle.

5 Experimental Results

The methodology described in the previous sections has
been implemented in an original software, coded in C++,
by using a library dedicated to the processing of
tessellated geometric models, which has been developed
at the University of L‟Aquila. The method herein proposed

has been tested for the tessellation of several scanned
point clouds characterised by some critical geometrical
features which add to the difficulty in their tessellation.
Other characteristic aspects of the analysed point clouds
are the number and spatial density distribution of points
as well as noise level. Most of the test cases used are
typical benchmarks taken from the related literature. The
tests have been run on a laptop with 2.4 GHz Intel Core
Duo 7700 Processor and 2 GB RAM.
In this paper, the performance of the new version of G2S
(henceforth, G2S_new) has been compared with that of
the old one [20] (henceforth G2S_old), that of the Cocone
methods (Cocone [9], Tight Cocone [10] and Robust
Cocone [11], whose .exe files were kindly provided by the
authors) and with that of the Ball Pivoting [17] (whose
implementation is based on the vcg library:
http://vcg/sourceforge.net) in terms of tessellation rate
(expressed as thousands of triangles created per second
[kΔ/s]) and defectiveness generated. The times have
been measured since the import of the point cloud up to
the .stl file generation. In what follows, nnmv, nholes and nbe

are, respectively, the number of non–manifold vertices,
holes and boundary edges. The above-mentioned
methods are verified in the tessellation of 12 point clouds
of closed surfaces and 5 point clouds of open surfaces
acquired with different sampling rates from objects having
different geometries. Some of these point clouds are very
large data sets (Turbine Blade, Nicolò da Uzzano,
Neptune and Asian Dragon). As far as the Cocone
methods are concerned, the point clouds of closed
surfaces are tessellated with the Tight Cocone [10],
whereas those of open surfaces are reconstructed with
the simple Cocone [9]. Some of the resulting renderings of
the surfaces tessellated by the G2S_new method are

shown in figure 6. The testing results are reported in
tables 1 and 2, where NV is the number of points in the
cloud and NT is the number of triangles generated.
By analysing the results obtained it is evident that the
algorithm here proposed and implemented correctly
erases all the non–manifold vertices. Furthermore, when
using the priority queue in the new version of G2S, in
most cases there is a reduction of holes and boundary
edges. This performance improvement is achieved by a
small reduction of the tessellation rate, which is still,
however, at least an order of magnitude higher than the
other methods considered. In some cases, such as the
raptor, the marked reduction in boundary edges is due to
the elimination of the problem of twisting surface
generation. Figure 7 shows the renderings of the
tessellation obtained for the Raptor with both the G2S_old
(a) and G2S_new. In the same figure, the outside of
triangles is coloured blue whereas the inside is coloured
yellow.
In order to verify the performance of the G2S_new in the

tessellation of noised point cloud data, specific
experiments are carried out. The performance of the new
version of G2S is compared with that of the old version
[20], that of the Robust Cocone method [11] and that of
the Ball Pivoting one [17].
The first experiment aims at comparing the four methods
in the tessellation of the Stanford Bunny with different
levels of noise added. Noise is randomly generated
according to a Gaussian probability density distribution
with different values of standard deviation (σ). Figure 8
illustrates the renderings of the results obtained, whereas
table 3 shows a comparison between their defectiveness.
It is evident that G2S_new is more robust than G2S_old in

the presence of noised point clouds. Since it does not
perform the smoothing of any points, even the new

http://vcg/sourceforge.net

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011

version of G2S produces more defectiveness than the

Robust Cocone and the Ball Pivoting for σ > 0.00025.
However, as highlighted in figure 8, the methods which

seem to be less sensitive to noise do not preserve
important details of the object.

\
Fig. 4 Explanation of the post processing used to erase the non – manifold vertices

a)

pf

dynamic_edge_queue

b)

el
e3

pl tf tl

v1 v3 t2 t1

e6

v1 v5 t8 t3

e8

v1 v6 t5 t4

e9

v1 v7 t4 t3

e12

v1 v9 t6 t5

e13

v1 v8 t7 t6

e15

v1 v10 t8 t7

e18

v1 v12 t10 t9

front

point_to_triangles

 vl
v1

back nt,a

0

v2

0

v3

0

v4

0

v5

0

v6

0

v7

0

v8

0

v9

0

v10

0

c)

v11

0

v12

0

v13

0

v1

v2

v3

v4

v6

v9

v7

v8 v10

v5

e1

e2

e3

e4

e5
t1

t2

t8
t7

t4

t6

t5
t3

e6

e7
e8 e9

e11

e10

e16

e14

e15 e17 e13

e12

v11

v12

v13

e18

e19

e20

e21

e22

t9

t10

front

point_to_triangles

 vl
v1

back nt,a

2

v2

0

v3

2

v4

0

v5

0

v6

0

v7

0

v8

0

v9

0

v10

0

d)

v11

0

v12

0

v13

0

t2 t1

t1 t2

e)

pf

dynamic_edge_queue
el pl tf tl

e6

v1 v5 t8 t3

e8

v1 v6 t5 t4

e9

v1 v7 t4 t3

e12

v1 v9 t6 t5

e13

v1 v8 t7 t6

e15

v1 v10 t8 t7

e18

v1 v12 t10 t9

f)

pf

dynamic_edge_queue
el pl tf tl

e6

v1 v5 t8 t3

e8

v1 v6 t5 t4

e9

v1 v7 t4 t3

e12

v1 v9 t6 t5

e13

v1 v8 t7 t6

e15

v1 v10 t8 t7

e18

v1 v12 t10 t9

g)

front

point_to_triangles

 vl
v1

back nt,a

0

v2

0

v3

0

v4

0

v5

0

v6

0

v7

0

v8

0

v9

0

v10

0

v11

0

v12

0

v13

0

e10

t4

e16

front

point_to_triangles

 vl
v1

back nt,a

2

v2

0

v3

0

v4

0

v5

0

v6

2

v7

0

v8

0

v9

0

v10

0

v11

0

v12

0

v13

0

h)

t5 t4

t4 t5

i)

pf

dynamic_edge_queue
el pl tf tl

e6

v1 v5 t8 t3

e9

v1 v7 t4 t3

e12

v1 v9 t6 t5

e13

v1 v8 t7 t6

e15

v1 v10 t8 t7

e18

v1 v12 t10 t9

front

point_to_triangles

 vl
v1

back nt,a

3

v2

0

v3

0

v4

0

v5

0

v6

2

v7

0

v8

0

v9

0

v10

0

v11

0

v12

0

v13

0

l)

t5 t3

t4 t5

front

point_to_triangles

 vl
v1

back nt,a

6

v2

0

v3

0

v4

0

v5

2

v6

2

v7

2

v8

2

v9

2

v10

2

v11

0

v12

2

v13

0

m)

t3 t3

t4 t5

t4 t3

t6 t5

t7 t6

t8 t7

t10 t9

t8 t3

n)

pf

dynamic_edge_queue
el pl tf tl

e18

v1 v12 t10 t9

v1

v6

v9

v7

v8 v10

v5

t8

t7

t4

t6

t5
t3

e6

e7
e8 e9

e11

e10

e16

e14

e15 e17 e13

e12

o)

v1

v4

v6

v9

v7

v8 v10

v5

t8

t7

t6

t5 t3

e6

e7
e8 e9

e11

e14

e15 e17 e13

e12

v11

v12

v13

e18

e19

e20

e21

e22

t9

t10

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

 7

Fig. 5 The twisting of the surface

The second experiment is carried out in order to
compare the four methods in the tessellation of the
Stanford Bunny with different levels of outliers being
added (5%, 10% and 20% of the total number of
points). By analysing the resulting renderings (depicted
in figure 9) and the generated defectiveness (reported
in table 4), the Robust Cocone seems to be inadequate
to tessellate point clouds with this type of noise. Neither
does the new version of G2S generate any non –
manifold vertices in this case. With a low percentage,
up to 5%, the tessellation obtained by means of the
G2S_new is not significantly affected by the presence
of outliers. For greater percentages, the defectiveness
generated in terms of holes and boundary edges are
comparable with those produced by the Ball Pivoting
method.

6 Conclusion

In a previous paper [20] these authors had already
presented a new-mesh growing approach based on the
Gabriel 2 – Simplex (G2S) criterion. The results
obtained proved that the G2S is competitive in terms of
tessellation rate, quality of the generated triangles and
low defectiveness, especially when compared with the
Cocone family and the Ball Pivoting methods. Its major

limitation was that, in the presence of a mesh which
was locally non – flat or was not sufficiently sampled, it
proved to be less robust and holes and non – manifold
vertices were generated.
 In order to improve the robustness of the G2S mesh-
growing method, this paper proposes an original priority
queue for the driving of the front growth and a post
processing to efficiently erase the non – manifold
vertices. The performance of G2S_new has been
compared with that of G2S_old, and that of the Cocone
family and the Ball Pivoting methods in the tessellation
of some benchmark point clouds and artificially noised
test cases. The results derived from these experiments
show that the improvements proposed and
implemented prevent the generation of non – manifold
vertices and make the G2S_new more robust than
G2S_old in terms of generation of defects such as
holes and boundary edges, also in presence of noised
point clouds. This performance improvement is
achieved by a small reduction of the tessellation rate
which is still, however, at least an order of magnitude
higher than in the other methods here considered. In
the case of much noised meshes, G2S_new produces
more holes and boundary edges than the Robust
Cocone and the Ball Pivoting methods, but the last
named ones do not preserve important details of the
object. Finally, in the presence of meshes with outliers,
the number of holes and boundary edges produced by
G2S_new can be said to be comparable with those
produced by the Ball Pivoting method.

References

[1] Li X., Han C.Y., Wee W. G., 2009. On surface
reconstruction: A priority driven approach. Computer-
Aided Design, 41 (9), 626-640.
[2] Chang M. C., Leymarie F. F., Kimia B. B., 2009.
Surface reconstruction from point clouds by transforming
the medial scaffold. Computer Vision and Image
Understanding, 113 (11), 1130 – 1146.
[3] Carr J., Beatson R., Cherrie H., Mitchel T., Fright W.,
Mccallum B., Evans T.: Reconstruction and
representation of 3D objects with radial basis functions.
SIGGRAPH (2001), 67–76.
[4] Turk G., O‟Brien J.: Modelling with implicit surfaces
that interpolate. In TOG (2002), 855–873.
[5] Tamal K. Dey , Jian Sun, An adaptive MLS surface
for reconstruction with guarantees, Proceedings of the
third Eurographics symposium on Geometry processing,
July 04-06, 2005, Vienna, Austria .
[6] Kolluri R. Provably good moving least squares. ACM
Transactions on Algorithms (TALG), 4 (2).
[7] Kazhdan, M., Bolitho, M., and Hoppe, H. 2006.
Poisson surface reconstruction. In Symposium on
Geometry Processing, 61–70.
[8] Amenta N., Bern M., Kamvysselis M., 1998. A new
Voronoi-Based Surface Reconstruction Algorithm. In the
Proceeding of Computer Graphics (SIGGRAPH „98), 415
– 421.
[9] Amenta N., Choi S., Dey T. K., Leekha N., 2002. A
simple algorithm for homeomorphic surface
reconstruction. International Journal of Computational
Geometry & Applications, 12 (1 & 2), 125 – 141.
[10] Dey T.K. and Goswami S., 2003. Tight cocone: A
watertight surface reconstructor. Journal of Computing
and Information Science in Engineering, 3 (4), 302–307.
[11] Dey T.K. and Goswami S., 2006. Provable surface
reconstruction from noisy samples. Computational
Geometry, 35 (1 – 2), 124 –141.
[12] Dey T.K., Giesen J., Hudson J., 2001. Delaunay
based shape reconstruction from large data. In the
Proceeding of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, 19–27.
[13] Amenda, N., Choi, S., and Kolluri, R., 2001. The
Power Crust, In the proceeding of the ACM Symposium
on Solid Modeling and Applications, 249-260.
[14] Cohen-Steiner D., Da F., 2004. A greedy Delaunay-
based surface reconstruction algorithm. The Visual
computer, 20 (1), 4-16.
[15] Gopi M, Krishnan S, Silva C., 2000. Surface
reconstruction using lower dimensional localized
delaunay triangulation. In the Proceeding of
Eurographics, 19 (3), 467 - 478.
[16] Cazals F., Giesen J., 2006. Delaunay triangulation
based surface reconstruction. In Effective Computational
Geometry for Curves and Surfaces, Boissonnat J.,
Teillaud M., (Eds.). Springer- Verlag, Math. and
Visualization, 231–276.
[17] Bernardini F, Mittleman J, Rushmeier H, Silva C,
Taubin G., 1999. The ball-pivoting algorithm for surface
reconstruction. IEEE Transactions on Visualization and
Computer Graphics, 5(4), 349-59.
[18] Huang J, Menq C. H., 2002. Combinatorial manifold
mesh reconstruction and optimization from unorganized
points with arbitrary topology. Computer – Aided Design,
34 (2), 149–65.
[19] Lin H. W., Tai C. L., Wang G.-J., 2004. A mesh
reconstruction algorithm driven by an intrinsic property of
point cloud. Computer-Aided Design, 36 (1), 1–9.

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

 8

[20] Di Angelo L., Di Stefano P., Giaccari L., “A new
mesh-growing algorithm for fast surface reconstruction”.
Computer – Aided Design, vol. 43 (6), 2011, p. 639-650,
ISSN: 0010-4485.
[21] Hoppe H., Derose T., Duchamp T., McDonald J.,
Stuetzle W., 1992. Surface reconstruction from
unorganized point clouds. In ACM SIGGRAPH, 71-78.

[22] Turk G., Levoy M., 1994. Zippered polygon meshes
from range images. In ACM SIGGRAPH, 311-318.
[23] Dyer, R., Zhang, H., Möller, T., 2008. Observations
on Gabriel meshes and Delaunay edge flips. Tech. Rep.
TR 2008-22, Simon Fraser University. SFU-CMPT.

Turbine blade 2 Chinese Dragon support

Body Nicolò da Uzzano

Fig. 6 Renderings of some of the obtained tessellations

Data point New G2S Method
Old G2S Method

[20]
Cocone methods

[9], [10] (▫)
Ball Pivoting method

[17]

Model name NV NT [kΔ/s] NT [kΔ/s] NT [kΔ/s] NT [kΔ/s]

Pulley (
**
) 293,672 587,266 328.5 587,181 371.8 587,312 0.67 571,738 52.82

Turbine Blade 2 (
*
) 396,104 791,916 288.5 792,041 377.3 791,873 1.72 736,685 43.69

Dragon (

) 435,545 834,771 304.5 805,376 348.1 867,282 0.62 782,185 35.46

Bimba (
**
) 502,694 1,005,246 366.2 1,005,172 432.5 1,005,088 0.82 953,618 23.82

Happy Buddha (

) 543,652 1,038,953 338.0 1,004,540 351.0 1,081,232 0.51 809,539 25.36

Support (
*
) 549,007 1,096,742 322.5 1,097,412 397.6 1,097,538 1.82 1,074,677 49.65

Rolling Stage (
**
) 596,903 1,190,806 319.7 1,193,303 373.5 1,193,688 1.49 1,168,744 57.07

Chinese Dragon (
**
) 655,980 1,311,307 322.0 1,311,296 475.2 1,310,435 0.99 966,266 25.28

Body (
*
) 675,049 1,349,076 299.7 1,349,609 279.7 1,344,039 1.2 1,326,963 59.47

Turbine Blade (

) 882,954 1,740,362 351.9 1,759,357 364.4 1,759,514 1.11 1,630,254 47.28

Nicolò da Uzzano (
**
) 946,760 1,891,949 367.0 1,891,992 464.5 1,891,669 1.93 1,795,917 40.33

Raptor () 1,000,080 1,685,915 349.6 1,716,226 439.6 -- -- 1,378,599 43.48

Neptune (
**
) 2,003,933 4,007,522 261.8 4,007,628 362.8 -- -- 3,119,149 20.01

Asian Dragon (
*
) 3,609,601 7,217,980 362.9 7,218,442 418.8 -- -- 6,715,376 26.22

(▫) The Cocone method [9] is used for point cloud of open surfaces whereas the Tight Cocone method [10] for point cloud of closed ones.
(*) http://www.scansystems.it

(**) http://shapes.aimatshape.net/

(***) http://www.lodbook.com/models/

Tab. 1 Comparison between the performance of the two versions of the G2S and that of the Cocone methods ([9], [10]) and the
Ball Pivoting [17].

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

 9

Model name

Defectiveness generated

New G2S Method Old G2S Method [20]
Cocone methods

[9], [10] (▫)
Ball Pivoting method

[17]

nnm

holes

nnm

holes

nnm

holes

nnm

holes

nholes nbe nholes nbe nholes nbe nholes nbe

Pulley 0 1 4 1 2 10 0 0 -- 0 0 --

Turbine Blade 2 0 2 9 10 12 77 1 1 11 0 1 3

Dragon 0 40 579 11 12 220 23 24 166 2 31 115

Bimba 0 6 117 11 12 220 8 5 54 0 0 --

Happy Buddha 0 54 508 32 47 462 39 11 93 0 8 41

Support 0 7 43 85 21 57 14 2 8 0 13 159

Rolling Stage 0 1 5 3 6 28 3 5 36 0 0 --

Chinese Dragon 0 19 103 47 35 928 18 13 119 0 12 40

Body 0 8 49 166 25 336 87 30 161 0 50 354

Turbine Blade 0 164 2089 42 66 1054 295 109 864 3 49 180

Nicolò da Uzzano 0 1 4 1 0 -- 98 284 1289 41 12 94

Raptor 0 36 207 269 91 1508 -- -- -- 0 7 37

Neptune 0 4 34 13 19 107 -- -- -- 0 7 37

Asian Dragon 0 31 193 41 88 721 -- -- -- 0 7 92

(▫) The Cocone method [9] is used for point clouds of open surfaces whereas the Tight Cocone method [10] is used for point clouds of
closed ones.

Tab. 2 Comparison between the reconstruction quality shown by the two versions of the G2S and that of the Cocone methods
([9], [10]) and the Ball Pivoting [17].

Fig. 7 Renderings of the tessellations obtained for the Raptor with the old (a) and the new versions of the G2S criterion

Defectiveness generated

New G2S Method Old G2S Method [20]
Robust Cocone

method [11]
Ball Pivoting method

[17]

nnm

holes

nnm

holes

nnm

holes

nnm

holes

nholes nbe nholes nbe nholes nbe nholes nbe

σ=0.0001 0 0 -- 1 1 6 0 0 -- 0 0 --

σ=0.00025 0 17 30 15 22 71 1 0 -- 0 3 9

σ=0.0005 0 241 1474 720 457 2967 1 0 -- 0 6 36

Table 3. Comparison of defectiveness generated by Robust Cocone [11] and Ball Pivoting [17] in the tessellation of noise added
point clouds.

Defectiveness generated

New G2S Method Old G2S Method [20]
Robust Cocone

method [11]
Ball Pivoting method

[17]

nnm

holes

nnm

holes

nnm

holes

nnm

holes

nholes nbe nholes nbe nholes nbe nholes nbe

5% 0 0 -- 0 2 4 -- -- -- 7 11 149

10% 0 20 244 114 17 725 -- -- -- 13 34 206

20% 0 31 457 123 24 757 -- -- -- 12 45 326

Table 4. Comparison of defectiveness generated by Robust Cocone [11] and Ball Pivoting [17] in the tessellation of point clouds
with outliers added.

a)

b)

Di Angelo and Giaccari A fast algorithm for manifold reconstruction of surfaces

 10

 New G2S method Old G2S method [20] Robust Cocone method [11] Ball Pivoting [17]

σ
=

0
.0

0
0
1

σ
=

0
.0

0
0
2
5

σ
=

0
.0

0
0
5

Fig. 8 Comparison between the reconstruction quality shown by the two versions of the G2S, the Robust Cocone [11] and the

Ball Pivoting [17] algorithms in the tessellation of noise added point clouds

 New G2S method Old G2S method [20] Robust Cocone method [11] Ball Pivoting [17]

5
%

The exe program generates an

empty file

1
0
%

2
0
%

Fig. 9 Comparison between the reconstruction quality shown by the two versions of the G2S, the Robust Cocone [11] and the

Ball Pivoting [17] algorithms in the tessellation of point clouds with outliers added.

