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Abstract 

Purpose: 
In a previous paper these authors presented a new mesh-growing approach based on the 
Gabriel 2 – Simplex (G2S) criterion. If compared with the Cocone family and the Ball Pivoting 
methods, G2S demonstrated to be competitive in terms of tessellation rate, quality of the 
generated triangles and defectiveness produced when the surface to be reconstructed was 
locally flat. Nonetheless, its major limitation was that, in the presence of a mesh which was 
locally non – flat or which was not sufficiently sampled, the method was less robust and holes 
and non – manifold vertices were generated. In order to overcome these limitations, in this 
paper, the performance of the G2S mesh-growing method is fully improved in terms of 
robustness. 

Method: 
For this purpose, an original priority queue for the driving of the front growth and a post 
processing to efficiently erase the non–manifold vertices are proposed. 

Result: 
The performance of the new version of the G2S approach has been compared with that of the 
old one, and that of the Cocone family and the Ball Pivoting methods in the tessellation of 
some benchmark point clouds and artificially noised test cases. The results derived from 
these experiments show that the improvements being proposed and implemented prevent the 
generation of non–manifold vertices and render the new version more robust than the old 
one. This performance improvement is achieved by a small reduction of the tessellation rate 
as opposed to the old version; the rate is still, however, at least an order of magnitude higher 
than the other methods here considered (the Cocone family and the Ball Pivoting methods). 

Discussion & Conclusion: 
The results obtained show that the use of the new version of G2S is advantageous, as 
opposed to the other methods here considered, even in the case of noised point clouds. In 
fact, since it does not perform the smoothing of points, not even in the presence of very 
noised meshes, the new version of G2S, while producing more holes than the Robust 
Cocone and the Ball Pivoting, nonetheless manages to preserve the manifoldness and 
important details of the object. 

1 Introduction 

The process of constructing a triangular mesh from a 
point cloud which has been acquired from a 3D real 
object is known as surface tessellation or reconstruction. 
The applications of triangular meshing of 3D point clouds 
are wide–ranging and include Reverse Engineering, 
Collaborative Design, Inspection, Computer Vision, 
Dissemination of Museum artefacts, Medicine, Special 
Effects, Games and Virtual Worlds. In many of the 
previously mentioned applications, robustness, reliability 
and triangulation speed are important factors that are 
required in any tessellation method.  
For the last few years the 3D scanning system has been 
offering high resolutions with a measuring accuracy as 
high as 10 μm, which, on the one hand, make it possible 
to capture the smallest surface features but, on the other 
hand, generate very large data sets. When analysing the 
related literature, it is evident that faster, more reliable 
and robust methods have a triangulation speed below 
50K triangles per second with the typical computing 
power. This speed may not be enough in the tessellation 

of a cloud with over one million points. Furthermore, by 
analysing the peak memory usage of these algorithms, it 
is clear that most of them cannot be run on personal 
computers.  
These authors have recently proposed a new mesh-
growing method based on the Gabriel 2 – Simplex (G2S) 
criterion. The results obtained are very promising since 
they demonstrate that this method makes it possible to 
tessellate quickly clouds with over one million points even 
by using a laptop. Its major limitation is however that, in 
the presence of a mesh which is locally non–flat or which 
is not sufficiently sampled, the method is less robust and 
therefore holes and non–manifold vertices are generated. 
We should bear in mind the fact that the mesh may be 
unusable without the deletion of this kind of vertices, 
which has to be carried out without compromising the 
areas which have been correctly reconstructed.  
In order to overcome these limitations, and as it is going 
to be shown in this paper, the performance of the G2S 
mesh-growing method is fully improved in terms of 
robustness. To this end, an original priority queue for the 
driving of the front growth and a post-processing to 
efficiently erase the non–manifold vertices are proposed. 
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The improved method has been tested for the tessellation 
of some benchmark point clouds and artificially noised 
test cases. The results derived from these experiments 
are critically discussed hereinafter. 

2 Related works 

It is on account of the importance of the problem referred 
to that numerous algorithms to tessellate point clouds are 
presented in literature. The more recent exhaustive 
overviews of 3D surface reconstruction methods are 
presented in [1] and [2]. Surface reconstruction algorithms 
are generally divided into two categories: implicit and 
explicit.  

2.1 Implicit methods 
Implicit methods attempt to reconstruct an implicit function 
f(p)=0, where p is either the whole point cloud or only a 

part of it. The final triangulation is obtained by extracting 
the isosurface for the f(p)=0. The most common methods 

define the implicit function as: 

- the sum of radial basis functions (RBF) centred at the 
points [3], [4]; 

- a set of constraints that force the function to assume 
given values at the sample points and also force its 
upward gradient to match the assigned normals at 
the sample points (Moving Least Squares) [5], [6]; 

- a Poisson problem [7]. 
These implicit methods carry out a watertight surface 
reconstruction also in the case of sparse and noised data. 
However, these methods may generally require many 
computations and, sometimes, they may even need the 
surface normal at each data point. Moreover, the triangles 
of the final surface may not pass through all the points, 
and this in turn may imply the loss of some details of the 
shape of the original model. The more points we use to 
compute the implicit function, the higher will be the fitting 
accuracy and the longer will be the computation time. 

2.2 Explicit methods 
Explicit methods attempt to triangulate the points directly. 
In contrast with implicit methods, they are less robust 
against noise but they are generally faster. The most 
common explicit methods can be classified into two main 
groups: Voronoi/Delaunay-based and mesh growing 
approaches.  

2.2.1 Voronoi/Delaunay-based methods 

The first group includes algorithms that compute a volume 
tetrahedralisation by a 3D Delaunay triangulation of the 
sample points. The most important methods presented in 
the related literature ([8], [9], [10], [11], [12], [13] and [14]) 
essentially differ in the way of removing the tetrahedra 
and building the external triangular mesh. These 
approaches often provide theoretical guarantees of a 
good reconstruction as the sampling density increases. 
Gopi and al. in [15] proposed a different approach which, 
for each sample point, provides the projection of the 
neighbouring points onto the approximating tangent plane 
and the tessellation of the projections by means of a 2-D 
Delaunay triangulation. The 2D edges obtained are then 
applied to 3D space.  

2.2.2 Mesh growing – based methods 

The mesh-growing approaches generate the tessellated 
surface from a seed triangle and grow the meshed area 
pushing the fronts ahead by using some criteria. For the 
last few years a number of algorithms have been 

presented. Thus Bernardini et al. [17] introduced the Ball 
Pivoting algorithm, whose front grows as a ball of user-
defined radius pivots around the front edge. When the ball 
touches three points a new triangle is formed. Generally 
speaking, this method affords a correct triangulation for a 
uniform data point, which is also noised, but which does 
not have concave sharp features. Huang and Menq in [18] 
proposed an algorithm which, for each front edge, projects 
the k nearest points of two endpoints onto the plane that 
is defined by the triangle adjacent to the front edge. Any 
point generating triangles whose edges intersect edges of 
already existing triangles is discarded. Among the points 
which are retained, the point showing the minimum sum of 
distances from the front edge endpoints is chosen. 
Nonetheless, and as pointed out by Lin et al. in [19], this 
algorithm presents some shortcomings. In order to 
overcome them, Lin et al. in [19] introduced the Intrinsic 
Property Driven (IPD) algorithm, which improves the way 
of searching for the point to be triangulated. As stated by 
Chang at al. in [2], all the methods based on mesh 
growing approaches are fast, efficient and simple to 
implement but they, however, fall short whenever two 
surfaces are either close together or near sharp features. 
More recently, Li et al. in [1] proposed a method based on 
a Priority Driven approach that evaluates shape changes 
from an estimation of the original surface that is made at 
the front of the mesh-growing area. The experimental 
results in [1] evidenced that the triangulation speed of this 
method is higher than that of Ball Pivoting and Cocone. 
However, no reckoning is made of the defectiveness it 
generates. Finally, in [20] these authors put forth a new 
mesh growing approach based on the Gabriel 2 – Simplex 
(G2S) criterion: A triangle is a G2S if its smallest 
circumscribing ball is empty.  

3 The Gabriel 2 – simplex criterion 
based method 

The algorithm presented in [20] can be summarised in the 
following steps: 

- Import of the point cloud; 

- Building of a specific data structure to speed up the 
nearest point search;  

- Seed triangle search; 

- G2S criterion based triangulation. 
The first step entails importing the point cloud, which 
pertains to a continuous surface, in the form of the 
coordinates x, y, z. Each point of the point cloud is kept in 
a hash table data structure for both point indexing and 
nearest neighbour searching. In the proposed algorithm 
the data structure used is an improvement of those 
proposed by Hoppe et al. in [21] and Turk et al. in [22].  

3.1 Selection of the seed triangle 
In order to select an appropriate seed triangle, a new 
method is employed. First of all, it makes a random choice 
of a point from the cloud. Then, its nearest neighbour 
point is searched for, and an edge is formed between 
these two points. A range search is performed inside a 
sphere which is centred at the midpoint of the edge and 
whose radius is k – times the length of the edge. For 
every point in the range, the method manages to build a 
triangle that is formed by the edge and the concerning 
point. That triangle is selected as seed if it is G2S and if 
the points contained in an infinite cylinder passing through 
the triangle vertices and having its axis parallel to the 
normal of the triangle are either all above or all under the 
triangle. This procedure is repeated until a triangle 
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satisfying the two previously mentioned conditions is 
found.  

3.2 G2S criterion based triangulation 
The edges of the seed triangle constitute the initial 
advancing front of the growing-mesh method. For each 
free edge (ef) (which are edges pertaining to only one 

triangle) of the growing front a triangle is generated 
according to the following procedure. Firstly, the 
candidate points near ef are identified as those inside a 
sphere having its centre on the axis of the free edge 
which lie on the plane of the front triangle, in the growing 
direction, and having a radius equal to the free edge’s 
length (figure 1). If no points are found inside the search 
region, the free edge is classified as boundary edge. 
When more than one point is inside the search region 

(cp1, cp2 and cp3 in figure 2a)), a point is randomly 
chosen (cp2 in figure 2b)) and the smallest sphere 

circumscribing that point and the front edge‟s points is 
constructed (the first search sphere in figure 2b). Then, if 
this sphere is not empty (cp1 and cp3 in figure 2c), 
another point inside the region is picked (cp3) and the 
procedure is repeated (the second search sphere in figure 
2c)). The process ends when the sphere passing through 
the chosen reference point and the extremes of ef is 

empty. The triangle defined by the front edge and the 
reference point is a candidate triangle which needs to be 
verified in the next step (figure 2d)).  
 
 

 
Fig. 1 The search region’s definition terms 

 
Fig. 2 Explanation of the strategy for the selection of a reference point with a view perpendicular to the front triangle 
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In order to speed up the triangulation process, if only one 
point is found inside the search region, that point 
identifies a candidate triangle with the free edge (ef) 
without verifying whether or not it is a G2S. If no point is 
found inside the search region, ef is removed from the 

front queue. Each of the new triangles retained is formed 
by the front edge (ef) and two further edges (e1 and e2). In 
order to check efficiently whether these two edges (e1 and 
e2) are really new or they already belong to other 

triangles, a data structure called Point Edge Map (PEM) is 
proposed which relates every point to its edges. For either 
edge (e1 and e2), the following conditions should be 

verified: 

- If the edge already pertains to another triangle, the 
consistency of the orientation of the new triangle with 
the triangle sharing the edge must be verified.  

- If this edge is new, it is added to the Point Edge Map 
and to the front queue and ef is removed from the 

front queue.  
The procedure ends when the free edges‟ queue is 
empty.  
The theoretical basis of G2S is taken for granted by 
accepting the fact that point clouds can be considered 
locally flat, or, in other words, that the surface to be 
reconstructed is locally oriented, smooth, manifold, well 
sampled and not self-intersecting. Under this hypothesis, 
the G2S criterion works like a 2D Delaunay tessellation 
through which surface reconstruction is guaranteed. 
These requirements are not so restrictive anymore, 
especially since the advent of high-resolution non–contact 
scanners which produce noise-free points clouds. More 
generally, as pointed out by Dyer et al. in [23], a Gabriel 
mesh (a mesh for which each triangle verifies the G2S 
criterion) is a Delaunay mesh. In [20] these authors 
already demonstrated it by analysing the typical 
benchmarks presented in the related literature:  

- the triangulation speed of G2S is comparable with a 
traditional 2D Delaunay-based mesher and it is at 
least an order of magnitude higher than the other 
methods here considered; 

- G2S produces triangles whose quality is similar to 
that of those triangles obtained by the Cocone 
methods and slightly better than the quality of the 
triangles obtained by the Ball Pivoting one; 

- G2S can reproduce even the smallest details of well 
sampled surfaces, similarly to Cocone methods, also 
in concave areas of strongly non–uniform point 
clouds where the Ball Pivoting method shows some 
problems; 

- G2S does not produce non–manifold edges, self 
intersecting triangles or slivers; 

- as regards non–manifold vertices, holes and 
boundary edges, the quantity and the extension of 
defectiveness generated by the G2S tessellation are 
on average similar to those produced by the Cocone 
and the Tight Cocone; 

- in the presence of a mesh which is locally non–flat or 
which is not sufficiently sampled, G2S is less robust 
and holes and non–manifold vertices are generated.  

4 Critical aspects in the G2S method 
and improvements 

As mentioned in the previous section, the G2S version 
proposed in [20] presents some critical aspects. In 
particular, in any area of a point cloud that is not locally 
flat or is not sufficiently sampled, G2S can generate: 

- holes, which identify unmeshed area; 

- non–manifold vertices, which are vertices for which 
the incident triangles form more than one fan (see 
figure 3); 

- a twisting of the surface. 
This paper focuses on the improvement of the G2S 
performance as regards the generation of non–manifold 
vertices and twisted surfaces. 

4.1 Non – manifold vertices 
In figure 3, the non–manifold vertex (v) is classified as 

type I if at least one fan is complete (figure 3a), and type II 
otherwise (figure 3b). In what follows, the triangles with at 
least one boundary edge are referred to as boundary 
triangles. In order to automatically remove the triangles 

(depicted in red in the figure) which make the vertex non–
manifold, in this paper a post–processing approach is 
proposed. This approach is based on a data structure that 
takes advantage of the fact that adjacent triangles have a 
congruent orientation and consists of: 

- the dynamic_edge_queue that initially has ne rows (ne 
is the number of edges that are not boundary) and six 
columns: edge_label (el), first_point (pf), last_point 
(pl), first_triangle (tf) and last_triangle (tl); 

- the matrix point_to_triangles constituted by nv rows 
(nv is the number of vertices) and four columns: 
vertex_label (vl), first_triangle_of_loop (front), 
last_triangle_of_loop (back) and nt,a (which is the 
number of triangles added in the loop).  

 
Fig. 3 Types of non – manifold vertices 

In order to explain the method here presented, let us 
consider the mesh depicted in figure 4a with the labels of 
the vertices, edges and triangles superimposed. First, the 
dynamic_edge_queue is filled with the edges of the mesh, 

except for the boundary ones (figure 4b) and in the 
point_to_triangles table, the labels of all vertices are 
added to the first column (figure 4c). The process starts 
by popping the first element off the queue (e3) and the 
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corresponding labels of tf (t1) and tl (t2) are added to the 

related lines of the matrix (figure 4d). Then, the first 
element of the new queue (figure 4e) is popped off (e6). 
Since the triangles‟ labels associated with v1 for e6 (t3 and 
t8) are different from those reported in the corresponding 

row of the matrix, this edge is pushed to the front of the 
queue (figure 4f). If once the queue has been scanned 
through, no edges of intersection of one of two extreme 
triangles of the loop (t1 and t2) have been found for the 
vertex under examination (v1), the loop is defined as open 
since tf ≠ tl. In the case that there are other edges incident 
to v1 in the queue, v1 is non–manifold of type II and the 

triangles of the loop are erased (figure 4g). Again, the first 
element of the queue is popped off (e8); the triangles t1 
and t6 are added to the corresponding rows of the matrix 
of the vertices v1 and v6 (figure 4h). Once more, the first 
element of the new queue (figure 4i) is popped off (e9). 
Since one of the two triangles incident to the edge (t4) is a 

terminal point (front) of the loop, in the corresponding row 
of point_to_triangles, this triangle is substituted with the 
other (t3) (figure 4l). This procedure is iterated until the 

triangles of the front and the back column are the same 
for a vertex (figure 4m), or, in other words, the loop is 
closed; in the case that in the dynamic_edge_queue there 
are edges incident to that vertex (figure 4n), the vertex v 

is non–manifold of type II; these edges and the 
corresponding triangles are erased (figure 4o). The 
procedure ends when the dynamic_edge_queue is empty. 

4.2 The twisting of the surface 
In this paper, the twisting of the surface identifies the 
generation on the same body of different tessellated 
surfaces not having congruent normals (figure 5). This in 
turn generates holes with extended boundary edges since 
adjacent patches not having a congruent orientation 
cannot be merged. In order to solve this problem, an 
original priority queue is proposed. The main idea at the 

basis of the priority approach being presented is to mesh 
first those areas for which the front grows in the flattest 
way in the neighbourhood.  
Since a priority queue based on a continuous priority 
value can really slow down the algorithm, a set of discrete 
priority values is adopted. The strategy used involves the 
definition of n priority levels for the search region radius 
(the smallest radius having priority 1 and the greatest one 
having priority n) and m priority levels for the flatness, 
measured as the angle (β) between the normal of the 
front triangle and the candidate triangle (the highest 
priority being assigned to β=0° and the lowest to β=180°). 

Since experience shows that the radius of the search 
region mainly affects a good reconstruction, the priority 
value (PV) is defined according to the following 
expression: 
 PV = m ·( plr – 1) + plf (1) 
where plr is the priority level of the search region radius 
(from 1 to n) and plf is the priority level of the flatness 
(from 1 to m). At the beginning all the edges in the free 
queue start with PV = 1 (maximum value of the priority). 
Then, these edges are positioned in the queue by sorting 
in ascending order the value of PV calculated for the 
corresponding candidate triangle. 

5 Experimental Results 

The methodology described in the previous sections has 
been implemented in an original software, coded in C++, 
by using a library dedicated to the processing of 
tessellated geometric models, which has been developed 
at the University of L‟Aquila. The method herein proposed 

has been tested for the tessellation of several scanned 
point clouds characterised by some critical geometrical 
features which add to the difficulty in their tessellation. 
Other characteristic aspects of the analysed point clouds 
are the number and spatial density distribution of points 
as well as noise level. Most of the test cases used are 
typical benchmarks taken from the related literature. The 
tests have been run on a laptop with 2.4 GHz Intel Core 
Duo 7700 Processor and 2 GB RAM.  
In this paper, the performance of the new version of G2S 
(henceforth, G2S_new) has been compared with that of 
the old one [20] (henceforth G2S_old), that of the Cocone 
methods (Cocone [9], Tight Cocone [10] and Robust 
Cocone [11], whose .exe files were kindly provided by the 
authors) and with that of the Ball Pivoting [17] (whose 
implementation is based on the vcg library: 
http://vcg/sourceforge.net) in terms of tessellation rate 
(expressed as thousands of triangles created per second 
[kΔ/s]) and defectiveness generated. The times have 
been measured since the import of the point cloud up to 
the .stl file generation. In what follows, nnmv, nholes and nbe 

are, respectively, the number of non–manifold vertices, 
holes and boundary edges. The above-mentioned 
methods are verified in the tessellation of 12 point clouds 
of closed surfaces and 5 point clouds of open surfaces 
acquired with different sampling rates from objects having 
different geometries. Some of these point clouds are very 
large data sets (Turbine Blade, Nicolò da Uzzano, 
Neptune and Asian Dragon). As far as the Cocone 
methods are concerned, the point clouds of closed 
surfaces are tessellated with the Tight Cocone [10], 
whereas those of open surfaces are reconstructed with 
the simple Cocone [9]. Some of the resulting renderings of 
the surfaces tessellated by the G2S_new method are 

shown in figure 6. The testing results are reported in 
tables 1 and 2, where NV is the number of points in the 
cloud and NT is the number of triangles generated.  
By analysing the results obtained it is evident that the 
algorithm here proposed and implemented correctly 
erases all the non–manifold vertices. Furthermore, when 
using the priority queue in the new version of G2S, in 
most cases there is a reduction of holes and boundary 
edges. This performance improvement is achieved by a 
small reduction of the tessellation rate, which is still, 
however, at least an order of magnitude higher than the 
other methods considered. In some cases, such as the 
raptor, the marked reduction in boundary edges is due to 
the elimination of the problem of twisting surface 
generation. Figure 7 shows the renderings of the 
tessellation obtained for the Raptor with both the G2S_old 
(a) and G2S_new. In the same figure, the outside of 
triangles is coloured blue whereas the inside is coloured 
yellow.  
In order to verify the performance of the G2S_new in the 

tessellation of noised point cloud data, specific 
experiments are carried out. The performance of the new 
version of G2S is compared with that of the old version 
[20], that of the Robust Cocone method [11] and that of 
the Ball Pivoting one [17].  
The first experiment aims at comparing the four methods 
in the tessellation of the Stanford Bunny with different 
levels of noise added. Noise is randomly generated 
according to a Gaussian probability density distribution 
with different values of standard deviation (σ). Figure 8 
illustrates the renderings of the results obtained, whereas 
table 3 shows a comparison between their defectiveness. 
It is evident that G2S_new is more robust than G2S_old in 

the presence of noised point clouds. Since it does not 
perform the smoothing of any points, even the new 

http://vcg/sourceforge.net
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version of G2S produces more defectiveness than the 

Robust Cocone and the Ball Pivoting for σ > 0.00025. 
However, as highlighted in figure 8, the methods which 

seem to be less sensitive to noise do not preserve 
important details of the object.  

\  
Fig. 4 Explanation of the post processing used to erase the non – manifold vertices 
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Fig. 5 The twisting of the surface 

The second experiment is carried out in order to 
compare the four methods in the tessellation of the 
Stanford Bunny with different levels of outliers being 
added (5%, 10% and 20% of the total number of 
points). By analysing the resulting renderings (depicted 
in figure 9) and the generated defectiveness (reported 
in table 4), the Robust Cocone seems to be inadequate 
to tessellate point clouds with this type of noise. Neither 
does the new version of G2S generate any non –
manifold vertices in this case. With a low percentage, 
up to 5%, the tessellation obtained by means of the 
G2S_new is not significantly affected by the presence 
of outliers. For greater percentages, the defectiveness 
generated in terms of holes and boundary edges are 
comparable with those produced by the Ball Pivoting 
method. 

6 Conclusion 

In a previous paper [20] these authors had already 
presented a new-mesh growing approach based on the 
Gabriel 2 – Simplex (G2S) criterion. The results 
obtained proved that the G2S is competitive in terms of 
tessellation rate, quality of the generated triangles and 
low defectiveness, especially when compared with the 
Cocone family and the Ball Pivoting methods. Its major 

limitation was that, in the presence of a mesh which 
was locally non – flat or was not sufficiently sampled, it 
proved to be less robust and holes and non – manifold 
vertices were generated.  
 In order to improve the robustness of the G2S mesh-
growing method, this paper proposes an original priority 
queue for the driving of the front growth and a post 
processing to efficiently erase the non – manifold 
vertices. The performance of G2S_new has been 
compared with that of G2S_old, and that of the Cocone 
family and the Ball Pivoting methods in the tessellation 
of some benchmark point clouds and artificially noised 
test cases. The results derived from these experiments 
show that the improvements proposed and 
implemented prevent the generation of non – manifold 
vertices and make the G2S_new more robust than 
G2S_old in terms of generation of defects such as 
holes and boundary edges, also in presence of noised 
point clouds. This performance improvement is 
achieved by a small reduction of the tessellation rate 
which is still, however, at least an order of magnitude 
higher than in the other methods here considered. In 
the case of much noised meshes, G2S_new produces 
more holes and boundary edges than the Robust 
Cocone and the Ball Pivoting methods, but the last 
named ones do not preserve important details of the 
object. Finally, in the presence of meshes with outliers, 
the number of holes and boundary edges produced by 
G2S_new can be said to be comparable with those 
produced by the Ball Pivoting method. 
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Turbine blade 2 Chinese Dragon support 

  
Body Nicolò da Uzzano 

Fig. 6 Renderings of some of the obtained tessellations 
 

Data point New G2S Method 
Old G2S Method 

[20] 
Cocone methods  

[9], [10] (▫) 
Ball Pivoting method 

[17] 

Model name NV NT [kΔ/s] NT [kΔ/s] NT [kΔ/s] NT [kΔ/s] 

Pulley (
**
) 293,672 587,266 328.5 587,181 371.8 587,312 0.67 571,738 52.82 

Turbine Blade 2 (
*
) 396,104 791,916 288.5 792,041 377.3 791,873 1.72 736,685 43.69 

Dragon (
***

) 435,545 834,771 304.5 805,376 348.1 867,282 0.62 782,185 35.46 

Bimba (
**
) 502,694 1,005,246 366.2 1,005,172 432.5 1,005,088 0.82 953,618 23.82 

Happy Buddha (
***

) 543,652 1,038,953 338.0 1,004,540 351.0 1,081,232 0.51 809,539 25.36 

Support (
*
) 549,007 1,096,742 322.5 1,097,412 397.6 1,097,538 1.82 1,074,677 49.65 

Rolling Stage (
**
) 596,903 1,190,806 319.7 1,193,303 373.5 1,193,688 1.49 1,168,744 57.07 

Chinese Dragon (
**
) 655,980 1,311,307 322.0 1,311,296 475.2 1,310,435 0.99 966,266 25.28 

Body (
*
) 675,049 1,349,076 299.7 1,349,609 279.7 1,344,039 1.2 1,326,963 59.47 

Turbine Blade (
***

) 882,954 1,740,362 351.9 1,759,357 364.4 1,759,514 1.11 1,630,254 47.28 

Nicolò da Uzzano (
**
) 946,760 1,891,949 367.0 1,891,992 464.5 1,891,669 1.93 1,795,917 40.33 

Raptor () 1,000,080 1,685,915 349.6 1,716,226 439.6 -- -- 1,378,599 43.48 

Neptune (
**
) 2,003,933 4,007,522 261.8 4,007,628 362.8 -- -- 3,119,149 20.01 

Asian Dragon (
*
) 3,609,601 7,217,980 362.9 7,218,442 418.8 -- -- 6,715,376 26.22 

(▫) The Cocone method [9] is used for point cloud of open surfaces whereas the Tight Cocone method [10] for point cloud of closed ones.  
(*) http://www.scansystems.it 

(**) http://shapes.aimatshape.net/ 

(***) http://www.lodbook.com/models/ 

Tab. 1 Comparison between the performance of the two versions of the G2S and that of the Cocone methods ([9], [10]) and the 
Ball Pivoting [17]. 

 

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/
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Model name 

Defectiveness generated 

New G2S Method Old G2S Method [20] 
Cocone methods  

[9], [10] (▫) 
Ball Pivoting method 

[17] 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nholes nbe nholes nbe nholes nbe nholes nbe 

Pulley 0 1 4 1 2 10 0 0 -- 0 0 -- 

Turbine Blade 2 0 2 9 10 12 77 1 1 11 0 1 3 

Dragon 0 40 579 11 12 220 23 24 166 2 31 115 

Bimba 0 6 117 11 12 220 8 5 54 0 0 -- 

Happy Buddha 0 54 508 32 47 462 39 11 93 0 8 41 

Support 0 7 43 85 21 57 14 2 8 0 13 159 

Rolling Stage 0 1 5 3 6 28 3 5 36 0 0 -- 

Chinese Dragon 0 19 103 47 35 928 18 13 119 0 12 40 

Body 0 8 49 166 25 336 87 30 161 0 50 354 

Turbine Blade 0 164 2089 42 66 1054 295 109 864 3 49 180 

Nicolò da Uzzano 0 1 4 1 0 -- 98 284 1289 41 12 94 

Raptor 0 36 207 269 91 1508 -- -- -- 0 7 37 

Neptune 0 4 34 13 19 107 -- -- -- 0 7 37 

Asian Dragon 0 31 193 41 88 721 -- -- -- 0 7 92 

(▫) The Cocone method [9] is used for point clouds of open surfaces whereas the Tight Cocone method [10] is used for point clouds of 
closed ones.  

Tab. 2 Comparison between the reconstruction quality shown by the two versions of the G2S and that of the Cocone methods 
([9], [10]) and the Ball Pivoting [17]. 

 

Fig. 7 Renderings of the tessellations obtained for the Raptor with the old (a) and the new versions of the G2S criterion 

 

Defectiveness generated 

New G2S Method Old G2S Method [20] 
Robust Cocone 

method [11] 
Ball Pivoting method 

[17] 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nholes nbe nholes nbe nholes nbe nholes nbe 

σ=0.0001 0 0 -- 1 1 6 0 0 -- 0 0 -- 

σ=0.00025 0 17 30 15 22 71 1 0 -- 0 3 9 

σ=0.0005 0 241 1474 720 457 2967 1 0 -- 0 6 36 

Table 3. Comparison of defectiveness generated by Robust Cocone [11] and Ball Pivoting [17] in the tessellation of noise added 
point clouds. 

 

Defectiveness generated 

New G2S Method Old G2S Method [20] 
Robust Cocone 

method [11] 
Ball Pivoting method 

[17] 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nnm 

holes 

nholes nbe nholes nbe nholes nbe nholes nbe 

5% 0 0 -- 0 2 4 -- -- -- 7 11 149 

10% 0 20 244 114 17 725 -- -- -- 13 34 206 

20% 0 31 457 123 24 757 -- -- -- 12 45 326 

Table 4. Comparison of defectiveness generated by Robust Cocone [11] and Ball Pivoting [17] in the tessellation of point clouds 
with outliers added.

a) 

b) 
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 New G2S method Old G2S method [20] Robust Cocone method [11] Ball Pivoting [17] 
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Fig. 8 Comparison between the reconstruction quality shown by the two versions of the G2S, the Robust Cocone [11] and the 

Ball Pivoting [17] algorithms in the tessellation of noise added point clouds  
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Fig. 9 Comparison between the reconstruction quality shown by the two versions of the G2S, the Robust Cocone [11] and the 

Ball Pivoting [17] algorithms in the tessellation of point clouds with outliers added. 


