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Abstract 

Stereo vision is a well-known technique which relies on a pair of cameras in order to 
reconstruct  the shape and position of a generic object, without any additional geometrical 
and/or parametric information. The central issue in the set-up of a stereo vision system is 
two-fold: as first, removing the geometrical distortion caused by camera lens from images, 
then, make cameras aware of their own relative position in space. This paper is aimed to test 
the influence of different components of a calibration routine. In particular the goal is to 
compare the performance of several optimization algorithms and a number of alternative 
implementations of the pin-hole model. A main difference between this work and other tests 
present in literature is that the calibration performance is evaluated with respect to the 
measurement accuracy of the system, rather than by means of estimated reconstruction 
errors. In such a way, we get rid of theoretical errors, which do not represent any real 
application case, and we evaluate the accuracy on-the-field, facing with real-world issues. 
The obtained results show that, even though very complex equations can be used in order to 
represent cameras, usually, simpler pin-hole models remain competitive and robust, while 
refinements can be attained by using more powerful operational research algorithms. 
 

1 Introduction 

Stereo vision is a well-known technique which relies on 
a pair of cameras in order to reconstruct the shape and 
position of a generic object, without any additional 
geometrical and/or parametric information. Such a 
technique is used in several industrial applications 
involving, among others,  reverse engineering. 

The central issue in the set-up of a stereo vision 
system is two-fold: as first, removing the geometrical 
distortion caused by camera lens from images, then, 
make cameras' aware of their own relative position in 
space. In order to solve this set of problems, cameras are 
usually represented by means of so named pin-hole 
models.  

Such models are usually tuned by means of two 
operational research algorithms: the first one employed to 
estimate models' optical parameters, the second used to 
estimate pin-holes (i.e. the cameras) relative position. The 
goal of the first algorithm is to obtain a parametric 
representation of lens distortion, which can be employed 
to undistort camera images. The second algorithm 
provides a rotation matrix and a translation vector, which 
act as mapping function between the cameras' reference 
systems. 

This paper is aimed to test the influence of different 
components of a calibration routine. The goal is to 
compare the performance of several optimization 
algorithms and a number of alternative implementations 
of the pin-hole model. In order to attain such a goal, 
several pin-hole implementations are calibrated against 
the same dataset by means of different algorithms. Later, 
calibrated models are used for the reconstruction of real-
life objects' shapesby means of a stereo-triangulation 
technique. With the aim of validating the accuracy of the 
calibration models, a comparison between the obtained 

3D models and the ones obtained by using 3D 
commercial acquisition devices is performed.Tested 
routines have been ranked by means of synthetic 
descriptors derived from descriptive statistics. 

A main difference between this work and other tests 
present in literature is that the calibration performance is 
evaluated with respect to the measurement accuracy of 
the system, rather than by means of estimated 
reconstruction errors1. In such a way, we get rid of 
theoretical errors, which do not represent any real 
application case, and we evaluate the accuracy on-the-
field, facing with real-world issues. 

The study has been limited to state-of-the-art mid-cost 
equipment and the stereo vision system has been 
assembled minding about possible constraints derived by 
industrial needs (as instance the dimension of the vision 
system itself), with the aim to provide useful hints for other 
machine vision application in industry. 

The remainder of this paper is organized as follow. 
Section 2 recalls the main calibration equations for both 
the mono and stereo problems and describes the general 
optimization procedure required to estimate stereo-vision 
parameters.  

Section 3 describes the different distortion models and 
optimization algorithms analysed in this paper.  

Section 4 concerns with experimental datasets and 
results.  

Finally, section 5 proposes some considerations and 
conclusions as well as further work. 

                                                 
1
 It is quite common to calibrate a system with a chessboard 

image set and validate it by counter distorting another set of 
chessboard images. This procedure, even though correct, do not 
produce any direct measurement of on-the-field accuracy. In our 
experience it is also an optimistic estimation of real life errors 
induced by different objects and shapes.  
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2 The stereo calibration problem 

Camera calibration problems can be roughly divided in 
to two cases: single camera calibration (mono-vision) and 
multiple camera calibration (multi-vision). In the first case 
only one camera has to be calibrated, that is, only lens 
distortions have to be compensated. No 3D 
reconstruction is possible in mono-vision2. In the second 
case many cameras are employed in order to obtain N 

simultaneous points of views from which derive 
geometrical information. By using those points of view a 
3D reconstruction isconceivable. Stereo-vision is a 
special case of multi-vision, where N=2.  

From an algorithmic stand point, stereo-vision 
calibration (shortly stereo-calibration) is a two-step 
process: first, cameras are calibrated independently3 in 
order to solve the mono-vision problem associated with 
each of them; later cameras’ relative position in space 
has to be estimated. 

Several calibration algorithms have been developed in 
the past in order to cope with the mono-vision problem. 
Two main families can be defined: self-calibration 
methods and photogrammetric methods [1]. The former 
group tries to estimate camera parameters referring to 
some unknown items which can be observed from 
different points of view in space. No metric information 
about such objects is required. The latter group estimates 
camera parameters by using a geometrically defined 
object, commonly referred as pattern. Patterns can be 1D, 
2D or 3D objects, whose geometry is fixed. This paper 
focuses on 2D photogrammetric calibration, 
providingliterature the evidence that this method is more 
accurate and dependablewhen high precision 
measurements are required (as in reverse engineering). 

2.1 Pin-hole model with distortions 

In order to calibrate cameras a mathematical 
representation of the hardware is required. Commonly a 
so called pin-hole model is employed in order to represent 
cameras, while lens distortions are modelled by means of 
an auxiliary equation (fig.1). 

 

 

Fig. 1 The pin-hole model. 

 Therefore solving the mono-vision problem implies the 
resolution of two simultaneous equations (the pin-hole 
and the distortion). No effective closed form solution is 

                                                 
2
Actually, 3D reconstruction is possible for an object of known 

geometry such as a calibration pattern (more in next section). 
3
Actually, the same set of simultaneously acquired pictures is 

commonly employed in practice. 

available for the calibration problem, as a consequence, 
numerical methods are employed in order to iteratively 
solve it. In [1], wide room is dedicated to the description 
and interpretation of the equation set, therefore the 
authors invite the novel reader to refer to [1] for any 
further detail. 

We shortly recall here the concept of intrinsic and 
extrinsic parameters and their relation to mono-vision 
calibration. 

Given a 2D object of known geometry, defined by 
means of a set P of points in space (i.e., described by a 
set of 3D vectors) and a fixed reference system, an 

homographic transformation H:ℝ3 → ℝ2 is an invertible 

function which projects the given pattern into a 2D 
domain, namely, a plane parallel to an image plane 𝜋 [1]. 
H comprises a rotation matrix and a translation vector 
commonly referred as extrinsic parameters of a camera. 

A pin-hole model C(f,c):ℝ2 → ℝ2 is described by the 

so-named intrinsic parameters: the lens focal length 
vector4f and the principal point c, that is, the projection of 
the CCD centre on the image plane 𝜋. Both f and c are 2D 

vectors. Once an homographic transform has been 
applied to a patternP, The role of the pin-hole model is to 

predict the projection P’ of P on 𝜋. 
The symmetric part of D(r,t)evaluates the distortion 

caused by the applied lens, while the non-symmetric one 
accounts for tangential distortions induced by possible 
misalignmentsin the camera-lens coupling. Given P’, the 

role of the distortion equation is to apply a nonlinear 
mapping in order to predict the exact position P’’ of P on 
the final image.   

 

Fig. 2Iso-distortion curves of D(r, t). 

The camera is thus representable by a model 

M(C(f,c),D(r,t))=M(f,c,r,t):ℝ2 → ℝ2. Given an estimation of 

𝑀  of M and 𝐻  ofH, it is therefore possible to 
approximatethe positionP’’of Pin a picture, and, 
theoretically5, reconstruct the original set Pgiven P’’as 

                                                 
4
 Even though lens have a uniquefocal, the pin-hole model 

represents it as a 2x1 vector, whose values are the estimated 
focal length expressed in terms of horizontal and vertical CCD 
cells sizes – which can differ. 
5
 Actually M is non-invertible, therefore numerical approximations 

are required.  
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𝑃 = 𝐻 −1𝑀 −1 𝑃′′  . Where the -1 superscript stays for the 

inverse function. 

2.2 Stereo-vision and epipolar geometry 

In order to understand stereo-vision it is important to 
recall that the re-projection in space of a single point v’ 
𝜖 𝜋 generates a line connecting the principal point c and 
v’.  Such a line can intercept more than one vertex in 
space. In other terms, a set 𝑒⊥ of vertexes adequately 

oriented in space can collapse into a single projected 
point. This implies that the projection point itself is not 
enough to reconstruct the actual position of a vertex v𝜖𝑒⊥. 

Therefore, a single mapping function 𝑀  can reconstruct a 

point in space only if the cardinality of 𝑒⊥ is 1 (and if an 

associated homography is present).  
In case an unknown object O is projected on an image 

plane, it is not possible to predict if each projected point 
Pis associated to a set with cardinality 1 and, also, there 
is no homography to map the point back in space (fig.3).  

As a consequence, as widely known, two or more 
points of view are required. 

 

 

Fig. 3 projection of aligned orthogonal edges. 

Given an estimation of camera models 𝑀𝑖
 ,with i=1,2 in 

the stereo-vision case, and the relative position of 𝑀2
  

w.r.t. 𝑀1
 , it is possible to reconstruct a vertexv𝜖𝑒⊥, from 

itsdistorted projections vi’’on images planes 𝜋𝑖 .The 

relative position of a camera w.r.t. the other is described 
by the augmented matrix R

a
=[R|T], where R is a 3x3 

rotation matrix and T a 3D translation vector. R
a
 can be 

computed as the composed homographyR
a
=H1H2

-1
which 

moves from one camera plane to the pattern plane 
(inverse homography H2

-1
), and, hence, projects back to 

the second camera plane (homography H1). 

An estimation𝑅𝑎  of R
a
 is required as camerasare not 

aware of their own position in an external inertial 
reference system, as a consequence, object projections 
cannot be referenced one to each other.Let SUbe the 
orthonormal matrix describing the inertial system with 

coordinates (x,y,z), the cameras lying in the space 

mapped by SU. If the cameras position is unknown, that is, 
if the equations of 𝜋1and 𝜋2areunknown in SU, it is not 

possible to reference the projection planes and, therefore, 
to understand on which planes O has been projected.  

A straightforward definition of SUcan beobtained by 
fixingthe origin of the system on a camera principal point6, 
settingz coincident to the optical axis and (x,y)parallel to 
the image plane and oriented according to camera CCD. 

In other terms, fixing 𝑀1
  as the reference camera for the 

sake of simplicity, c1=(0,0,0) in SU and 𝜋1 = 𝑎𝑥 + 𝑏𝑦 +
𝑐𝑧.In such a way it is possible to switch from a camera 

point of view to the other by applying𝑅𝑎 .  

Indeed,being the pattern known, it is possible to: 
estimate the homographic transforms of both cameras 
w.r.t. the pattern, move from one camera plane to the 
pattern plane, and, hence, re-project to the second 
camera. 

As instance, it is possible to map O2’’ in 𝑀1
  by applying 

the following chain of operators: 
 

 𝑂 2,1’’=𝑀1
  𝑅𝑎  𝑀2

 −1
 𝑂2’’   (1) 

 

where 𝑂 2,1’’ is the estimated projection of O on image 
plane 𝜋1obtained by: re-projecting O2’’ in space; roto-

traslating it in SU and projecting itagain on𝜋1.𝑅𝑎 is a visual 

shorthand for the roto-translation operator. 
 

 

Fig. 4Epipolar geometry. 

Let v1’’ and v2’’ be respectively the distorted projections 
of a vertex v𝜖𝑒⊥on 𝜋1 and 𝜋2, the following steps have to 
be followed in order to reconstruct the position of v in 

space. As first, it is necessary to apply the mapping 𝑀𝑖
 −1

 
to v,i’’: in such a way the distorted i-th projection is 
undistorted and re-projected in space. Each re-projection 

describes a line ri. The mapping 𝑅𝑎 is applied to r2 leading 

to 𝑟 2,Su=𝑅𝑎 r2. According to the common geometry of a 

stereo vision system, 𝑟 2,Su and r1 intersect in space in a 

unique point: such point is and estimation 𝑣  of v. 

In real applications, more than a projected point is 
present on image planes. Therefore, in order to 
reconstruct a shape,it is important to detect which 
projected point vk,1’’ is associatedto which point vk,2’’. In 

order to cope to this problem the epipolar line [2] can be 
computed. 

                                                 
6
 We consider only the case of non-moving vision systems. 



R. Furferi et al. On the performance of several stereo calibration methods and models 

June 15th – 17th, 2011, Venice, Italy Proceedings of the IMProVe 2011 

2.3 The estimation process 

The goal of a stereo calibration routine is to iteratively 
solve both the mono- and stereo- problems by means of 
optimization algorithms. As stated above, a first iterative 
round is performed in order to solve the mono-vision 
problem, that is, in order to obtain an optimal estimation 
of the parameters vector 𝑚 = [𝑓, 𝑐, 𝑟, 𝑡], which minimizes, 
in the least square sense, the root square error: 

 

 𝑅𝑆𝐸𝑚𝑜𝑛𝑜 =   (𝑣𝑗
′′ − 𝑣 𝑗

′′ (𝑘))2𝑛
𝑗 =1  (2) 

 
Where: jis the number of vertexes present on a 2D 

calibration pattern;vj’’ is the projection of the j-th vertex on 
the distorted picture and 𝑣 j’’(k) is an estimation ofvj’’, 
obtained during the k-th optimization step, by means of a 

tentative vector (and associated tentative homography). 

Once an optimal estimation 𝑚𝑖 𝑜𝑝𝑡
 has been obtained 

for both camera 1 and 2, the second iterative round can 
be performed in order to obtain and optimal 

estimation𝑅𝑎 𝑜𝑝𝑡
of R

a
. Again, such an estimation is 

optimal in the least square sense and is obtained by 
minimizing aroot square error,a widely7 used 
formulationfor itbeing: 

 

 𝑅𝑆𝐸𝑠𝑡𝑒𝑟𝑒𝑜 =    (𝑣𝑖,𝑗
′′ − 𝑣 𝑖,1,𝑗

′′ (𝑘))2𝑛
𝑗 =1

2
𝑖=1  (3) 

 
Where: i is the camera number and all other items 

preserve the meaning of eq. (2). It is worth the trouble to 
point out that, accordingly to the previous notation, 
𝑣 𝑖,1,𝑗

′′ (𝑘) represents the distorted projection of the j-th 

vertex on 𝜋1.In case i=1, it simply indicates the projected 
point of the j-th vertex on the camera plane, otherwise is it 
the estimated position obtainedby applying eq. (1)during 
the k-th step, by using a tentative augmented matrix. An 

alternative version of eq.(3) can be written by omitting 
camera 1, that is, accounting only for camera 2 projected 
points. 

3 Investigated models and methods 

 
According to the underlying theory recalled in section 

2, the following items have been investigated in the 
present work: 

1. a number of optimization routines for the 
mono and stereo problems; 

2. an alternative formulation of the error 
functions; 

3. camera vectors m with simplified 
representations coupled with a number of 
formulations of D(r,t). 

 
The following paragraphs dedicate room to the 

description of the selected choices. 

3.1 Optimization routines 

The iterative procedures commonly employed for the 
resolution of eq. (2) and (3) belongs to the family of so-
called non-linear least square solvers [3]. Among the 
many algorithms available for this kind of problems, we 
have limited our investigations to those implemented in 

                                                 
7
 This is basically the formulation implemented in the well-known 

Camera Calibration Toolbox for Matlab by Jean-Yves Bouguet. 

the Matlab® programming environment, being it a 
dependable and commontool in research and providing it 
a wide set of state of the art solvers. Namely three 
methods have been analysed here: the gradient descent 
(as baseline), the Levenberg-Marquardt algorithm [5][6] 
and the Trust Region method [7]. 

The gradient descent (GD) is one of the most known 
methods for function minimization. It dates back to Gauss 
and searches for local minima8 by updating an initial 
vector at each step k, according to the formula: 

 
 𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑘  𝑤𝑖𝑡𝑕  𝛿𝑘 = −𝛼𝑘𝐽 𝑥𝑘  (4) 

 
Where x is the vector of free variables, J(xk) is the 

gradient of the error function (as instance of eq. (2) or (3)) 
and 𝛼𝜖 0,1  is a scaling factor. Usually, the scaling factor 
is updated at each step k in order to face with the nature 
of the gradient function. At the beginning a small value of 
α is used in order to cope with possible irregularities along 
the gradient direction, while increasing values are used 
when the research goes closer to the local point. This 
assures for a faster convergence when the search method 
impacts on a local minimum, which, commonly, is located 
in a relatively flat region. 

The  Levenberg-Marquardt algorithm (LMA) is one of 
the mostly employed methods for minimization. It is 
preferred over (4) due to its robustness against local 
minima, granting an higher probability of convergence in a 
global point. According to LMA, the free variables are 
update by an increment δk obtained by solving the 
following equation: 

 
 𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘) + 𝛼𝑘𝑑𝑖𝑎𝑔 𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘)  𝛿𝑘 = 

 = −𝐽 𝑥𝑘 𝑇𝑒 𝑥𝑘  
 
Where e(xk) is the error function and all other items 

preserve the meaning of eq. (4). 
The Trusted Region method (TRM) involves a two-step 

procedure at each iteration k: as first the objective 
function e(x) is approximated by a simpler one (usually by 
an xk-centred 2

nd
 order Taylor series of the function), then 

such a function is minimized into a neighbourhood D of xk. 
Let be se(x) the simplified objective function, that is: 

 

 𝑠𝑒 𝑥 = 𝑥𝑇𝑆(𝑥)𝑥 + 𝐽(𝑥)𝑇𝑥 
 
Where S(x) is the hessian matrix of the error function. 

The goal is to find a point xk+δkin Dsuch that: se(xk+δk) is 
minimized and e(xk+δk)<e(xk). The most challenging part 
of the problem is the definition of the size of the 
neighbourhood as well as the find out of a fast way for 
solving the trust region minimization. For a primer on the 
topic we remind to [7]. 

3.2 Error functions 

Among the different error formulations, an empirical 
alternative has been investigated with the aim to increase 
the impact of errors on the optimization routine and attain, 
if possible, a globally lowered error. In order to increase 
the impact of each error in eq. (2) and (3), the following 
modification has been investigated: 

 

 𝐿𝐸𝑚𝑜𝑛𝑜 =  −𝑙𝑛(1 −  
𝑣𝑗

′′ −𝑣 𝑗
′′ (𝑘)

𝑣𝑗
′′ −𝑣 𝑗

′′ (0)
 )𝑛

𝑗 =1  (5) 

 

                                                 
8
 None of the proposed methods can assure for global 

convergence. 
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And the associated stereo version: 
 

 𝐿𝐸𝑠𝑡𝑒𝑟𝑒𝑜 =   −𝑙𝑛(1 −  
𝑣𝑖,𝑗

′′ −𝑣 𝑖,1,𝑗
′′ (𝑘)

𝑣𝑖,𝑗
′′ −𝑣 𝑖,1,𝑗

′′ (0)
 )𝑛

𝑗 =1
2
𝑖=1  (6) 

 
Where the root square error has been replaced by a 

logarithmic cost. The adoption of such a cost is motivated 
by the fact that a log-cost of this kind presents a steepest 
curve if compared to the classical squared error. Due to 
this, local errors should increase their relative weight in 
the cost function. In such a way, even a single error on 
one patter point, should acquire more relevance in the 
overall optimization routine, leading to more strict results. 

3.3 Camera vectors 

Among the different camera vectors m, two simplified 
alternatives have been investigated. The first one, named 
mf=1, is motivated by the fact that almost all CCD have 
squared cell sizes, this means that the focal vector f could 
be forced to collapse into one simple scalar.  

The second one, named mc=fix, is related to the fact 
that mid-quality industrial camera assemblies (camera 
body + lens) usually show a quite good alignment 
between the optical axis of the lens and the versor of the 
CCD plane9. In other terms the principal point is expected 
to rely on a very small neighbourhood of the image 
centre. This leads to a simplified camera representation 
which do not include the principal point as a free variable, 
being it fixed to c=(w/2,h/2), where w and h define the 
camera resolution in pixels. 

For what concerns the distortion model, a number of 
different polynomial functions have been 
investigated.Being radial distortion usually the most 
relevant aberration component, we have focused our 
investigation on it. One of the most common models for 
lens distortion is the fourth order radial distortion model 
with even powers, defined as: 

 

 𝐷4,𝑒𝑣𝑒𝑛 (𝜌) = 𝑟1𝜌
4 + 𝑟2𝜌

2 + 1 
 

Where ρ is the radial distance of a projected point, 
computed w.r.t to c. In order to investigate the fitting 
capability of different polynomial formulas, we have varied 
the order of polynomials introducing both even/odd and 
full forms. For the sake of briefness, we identify such 
formulas by the term Di,type, where i is the order of the 
polynomial and type can be one among even, odd or 
fulldepending on the employed powers. 

4 Experimental datasets and results 

 
The experimental data set has been retrieved by using 

a prototype developed for the measurement of car wheel 
alignment. Such a prototype concerns the development of 
an innovative artificial vision system capable to perform 
the measurement of camber and toe angles of vehicle 
wheels. The vision system acquires the 4 wheels of the 
vehicle in order to carry out a three-dimensional 
reconstruction of the scene, thus allowing a non-intrusive 
and real-time measurement of the toe and the camber 
angles [9]. The output of a measurement is, therefore, a 

                                                 
9
This is confirmed, also, by the commonly small values assumed 

by the tangential distortion. 

pair of values representing toe and camber in centesimal 
degrees. 

4.1 Equipment and data 

The acquisition system is composed by 2 grey scale 
industrial cameras (c-mount) with a resolution of 
1024x768. 3.5’ lens have been mounted on both cameras. 
The angle between cameras is 20° and images have been 
acquired by using ultraviolet light sources and filtered by a 
band pass filter mounted in front of the camera lens. Lens 
type, system angle and illuminators have been 
constrained by the application design, thus, they 
represent possible limitations induced by real cases.  

Calibration images have been kept by using a 
chessboard as 2D calibration pattern. The squares of the 
chessboard measure a size of 3 cm and the chessboard 
is composed by 29 rows of 19 squares. 16 images have 
been simultaneously acquired with the two cameras and 
processed for both mono and stereo calibration. 

50 validation images have been acquired by using the 
equipment in a real test, thus, neither known geometry is 
available nor constrains about shape and position of 
objects can be defined. During the test, the car wheels 
have been oriented in different positions, causing the 
system to face with different configurations of the 
observed objects.  The specificity of the validation set is 
that the observed objects cover the 90% of the image 
plane, thus they also rely on peripheral areas of the 
images, being subject to really high distortions. 

 

 

Fig. 5examples of calibration and validation images. 

The calibration software has been obtained by hacking 
the well-known Camera Calibration Toolbox for Matlab by 
Jean-Yves Bouguet [10]. Therefore some of the 
algorithms come from this well-tested application, while 
specific modifications have been plugged in on demand 
for this paper. 

4.2 Methods  

As stated above, theforemost difference between the 
present work and other testsdescribed in literature is that 
the calibration performance is evaluated with respect to 
the measurement accuracy of the system, rather than by 
means of estimated reconstruction errors. As a 
consequencewe get rid of theoretical errors, which do not 
represent any real application case, and we evaluate the 
accuracy on-the-field. 

In order to evaluate the accuracy of obtained 
measures, the output of the system is compared with a 
state of the art measurement system in use in the 
automotive industry. Such system being certified for 
accuracies of ±0.03°. 

In order to rank each calibration, some statistics have 
been computed on validation images. Being the real value 
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of both camber and toe known, for each validation images 
an error has been computed as follows: 

 
 

 𝑒 =  𝑥𝑣𝑖𝑠𝑖𝑜𝑛 − 𝑥𝑟𝑒𝑓   (7) 
 

Where xvisionis the measure obtained by the vision 
system, while xref is the one obtained by the reference 
system. 

In order to evaluate the accuracy of the system, the 
expected error along with its confidence interval has to be 
computed. The assumption is that the error distribution 
can be modeled by a normal distribution N(µ,σ). Being 
both µ and σ unknown, the expected value of the error 
and its related confidence interval can be computed by 
means of: 

 

 𝑒99% = 𝜇 ± 𝑡 𝑀−1,0.99 
𝜍 

 𝑀
 (8) 

 
Where 𝜇  and 𝜍  are the unbiased estimators of the 

mean and standard deviation of error e, M is the number 
of error measurements, t(M-1,0.99) is the t-student 
distribution for the mean estimation at aconfidence level 
of 99%. 

Being eq. (8) fixed for each calibration and varying only 
the unbiased estimators, a simplified scoring rule has 
been defined as: 

 
 𝑠 = 𝜇 + 𝜍   (9) 
 

It can be easily shown that when eq. (9) increases, eq. 
(8) provides an higher uncertainty and/or an higher 
average error, thus, eq. (9) can be considered as a 
synthetic estimator of system bias. 

Every measurement set provides two scores: one for 
toe estimation stoe, and one for camber scamber. In order to 

get a single index of calibrationcorrectness, a total score 
stot has also been computed as sum of toe and camber 
scores. 

Each investigated system will be identified by a set of 
four items(mx;Di,type; {RSE,LE}; {GD,MLA,TRM}) which 
uniquely identifies the kind of camera vector and the 
related radial distortion model along with the objective 
function (eq. (1) and (2)or(5) and (6) ) and the employed 

optimization method. 

4.3 Results and discussion 

As first, a baseline system (mstock;D4,even;RSE;GD)has 
been evaluated, where mstock is the classical vector 

described in section 2. Later, the systems reported in 
table 1 have been analyzed. Table 1 does not report all 
the possible combinations of vectors, distortion equations 
and optimization objectives/methods. The set of reported 
systems has been obtained by selecting those results 
which appeared to provide any relevant evidence in 
support or in contrast to a certain hypothesis. In bold the 
structural differences w.r.t the baseline system. 

 

Name m D obj Method Score %w.r.t base 

Baseline mstock D4,even RSE GD 3.40 0.00 

Sys1  mstock D4,even RSE LMA 3.24 -4.70 

Sys2 mstock D4,even RSE TRM 3.10 -8.82 

Sys3 mstock D4,even LE TRM 3.38 -0.58 

Sys4 mc=fix D4,even RSE TRM 5.15 51.47 

Sys5 mf=1 D4,even RSE TRM 2.92 -14.11 

Sys6 mf=1 D2,even RSE TRM 10.69 214.41 

Sys7 mf=1 D6,even RSE TRM 5.92 74.11 

Sys8 mf=1 D2,full RSE TRM 3.64 7.05 

Sys9 mf=1 D3,full RSE TRM 4.26 25.29 

Sys10 mf=1 D3,odd RSE TRM 2.94 -13.52 

Tab. 1analysed systems along with resulted scores. 

 
The very first consideration is that both sys5 and sys10 

seems to be the winner in this comparison.More in depth, 
by comparing the first four systems it is pointed out that 
the selection of an adequate optimization routine can 
completely redefine the accuracy of a numerical model. 
Indeed, a reduction of the inaccuracy score of almost a 
9% is obtained without modifying any internal component 
of the baseline system. 

By looking at sys4 and sys5 it is pointed out that even if 
a really accurate coupling can be attained with mid-quality 
industrial equipment, the principal point estimation is 
mandatory, nonetheless, a simplified focal length 
representation can boost the final accuracy up to -14% 
(with an additional improvement w.r.t to sys2 of 56%!). 

Finally, among the different shapes of the radial 
distortion equation it seems that a relatively low order 
polynomial can attain a very good estimation of the actual 
aberration, confirming what obtained in [8]. What seems 
new and unpredicted is that even an odd formulation can 
adequately estimate the lens distortion, even though 
classical photogrammetric models historically relies only 
on evenpowers. 

For what concerns the objective function, it seems that 
the maximum likelihood estimation obtained by means of 
the RSE still holds w.r.t to other alternatives, even though 
the LE alone still doesn’t full fit the needs of an exhaustive 

analysis.  𝐷4,𝑒𝑣𝑒𝑛 (𝜌) = 𝑟1𝜌
4 + 𝑟2𝜌

2 + 1 (9)  

5 Conclusion 

The obtained results show that, even though very 
complex equations can be used in order to represent 
cameras, usually, simpler pin-hole models remain 
competitive and robust, while refinements can be attained 
by using more powerful operational research algorithms. 

Namely, the level of modern mid-quality industrial 
equipment seems to not require any specific computation 
of 2D focal vectors. At the same time, actual assemblies 
seems to be affected by misalignments which induces 
neglectable tangential distortions but still affect the 
centering of the image plan in a relevant manner. 

For what concerns lens distortion, it is known that the 
number of experimental data grows with the complexity of 
models in a more that linear manner, nonetheless there is 
no evidence that the provided dataset was too limited in 
order to tune complex polynomials.  

This leads to consider the fact that, actually, small 
polynomials have modeled relevant levels of distortion 
without any issue, overcoming more sophisticated 
solutions. Therefore, it can be derived that, even if applied 
lens show a relevant aberration, quite simple models 
seems good enough to cope with the problem in industrial 
applications. 
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Eventually, it is worth the trouble to mind about the 
numerical methods employed for the calibration, being 
algorithms responsible of relevant levels of refinement. As 
far as common methods are involved, the TRM is 
recommended here. 

Wide room has to be dedicated to objective functions, 
instead. The bare minimum test conducted in this study 
do not support the idea that a different objective function 
can induce benefits to the calibration routines, 
nonetheless, other alternative cost functions should be 
elaborated in order to cope with the problem. An 
additional direction of study is the analysis of non-
deterministic methods such as genetic algorithms or 
simulated annealing procedures. Eventually, further work 
should be dedicated to non-polynomial families of 
aberration functions, in order to assess the benefit 
induced industrial applications by these unconventional 
models. 

References 

[1] Zhang, Z., “A flexible new technique for camera 
calibration”, technical report MRS-TR-98-71, 1998 
[2] Linda G. Shapiro and George C. Stockman (2001). 
Computer Vision. Prentice Hall. pp. 395–403. ISBN 0-13-
030796-3. 
[3] Dennis, J.E., jr., “Nonlinear Least-squares”, State of 
the art in numerical analysis, ed. Jacobs, Accademic 
Press, pp.269-312, 1977. 
[4] Marquardt, D., "An Algorithm for Least-Squares 
Estimation of Nonlinear Parameters," SIAM J. Appl. Math. 
Vol. 11, pp 431-441, 1963. 
[5] Levenberg, K., "A Method for the Solution of Certain 
Problems in Least Squares," Quart. Appl. Math. Vol. 2, pp 

164-168, 1944. 
[6] Moré, J.J. and D.C. Sorensen, "Computing a Trust 
Region Step," SIAM Journal on Scientific and Statistical 
Computing, Vol. 3, pp 553-572, 1983. 
[7] The Matlab help manual, distributed with the IDE 
[8] Weng, J., Cohen, P., Herniou, M., “Camera 
Calibration with Distortion Models and Accuracy 
Evaluation”, IEEE transactions on pattern analysis and 
machine intelligence, Vol.14, pp.965-981, 1992. 

[9] M.Carfagni, R.Furferi, L. Governi. Progetto e 
realizzazione prototipale di un nuovo sistema basato su 
visione artificiale per la misura tridimensionale dell’assetto 
ruote di autoveicoli, Congresso Internazionale Congiunto 
XVI ADM – XIX INGEGRAF, Perugia, 6 – 8 Giugno 2007 
[10] Camera Calibration Toolbox website, 
http://www.vision.caltech.edu/bouguetj/calib_doc. 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-030796-3
http://en.wikipedia.org/wiki/Special:BookSources/0-13-030796-3
http://www.vision.caltech.edu/bouguetj/calib_doc

