Cerca all'interno del sito
Description
Publications (146)
Abstract: Nowadays, energy efficiency of industrial plants is an issue of primary concern. This research aims at minimizing the Energy Consumption (EC) of Industrial Manipulators (IMs) leveraging on Eco-programming strategies. In particular, building upon well-known methods for robot trajectory planning, a novel time-scaling approach is proposed, which employs a non-linear scaling function to better optimize EC. In this scenario, a Graphic User Interface (GUI) has been realized to ease the implementation of the presented algorithm, offering a fast and user-friendly tool to be used by robotic cell designers. Different manipulators models can be uploaded in the GUI to then automatically run the non-linear optimization process and retrieve a minimum-energy trajectory. As an instance, a 6 Degrees of Freedom IM has been considered; the obtained results have been compared with other methods known from the literature and validated through a commercial tool. The proposed method is verified to be more effective for energy-intensive trajectories, possibly reaching EC savings of more than 10 %.
Keywords: Eco-programming | Energy efficiency | Graphic User Interface | Industrial robotics | Smart manufacturing | Trajectory scaling
Abstract: The constant growth in global energy demand, and corresponding prices rise, is soaring new engineering methods for reducing energy consumption in manufacturing processes. For decades, industrial robotics have been enabling quality enhancement of end-products by using flexible manufacturing processes, without much concern to energy cost, but now a makeover is happening. Calls for sustainable and green manufacturing processes are being promoted across the globe with the aim to produce more goods and with less consumption. In this paper, a new method is presented focusing on the optimization of energy intake by industrial robots, without the need to change their hardware set and just modifying the trajectory planning of the end-effector. A test case scenario consisting of a robotic cell with 4 pick-and-place manipulators has been set to validate the method. Starting from a pre-scheduled trajectory, robots are moved at the highest speed and acceleration and, by performing the sequenced operations, the optimal trajectories are defined. The goal is to find a trajectory that minimizes the time cycle and the total energy consumption, while avoiding collisions between the robots’ links: comparing the results thereof to those of the pre-scheduled trajectory, noticeable energy saving has been obtained along with possible decrease of the cycle time.
Keywords: Computer-aided engineering tools | Energy efficiency | Robot scheduling | Trajectory planning | Virtual prototyping
Abstract: ‘Repair’ in the design process of products can prolong the life cycle of parts: this is substantiated by a few examples that put this ideology into practice. Among many other products, home printers could be a good example, with huge numbers of printers ending up in landfill after a relatively short life; often due to blocked print heads that are either impossible or too expensive to replace. The act of fixing things can both prolong the life of an artifact, and create new values through the process of engagement for its users. However, the prohibitive cost of repair makes it inaccessible or unfavorable this practice for many. In this paper a preliminary approach to Design for Repair is proposed, in order to virtually test an industrial case study and to show a comparison between a product, that was intended to disposal after a failure of some components, and the same product re-designed, by taking into account how to repair parts in easy and effective way. Redesign of parts in some cases can be very effective and the virtual test can be easily reproposed in practice, for industrial products. Advantages in the repair of parts is evident in terms of sustainability and circular economy pursuit. This paper suggests a sequenced method to approach the Design for Repair and provide the virtual model of a re-designed solution that could replace the previous one in order to make the repair of components easy and effective. The economic analysis on the effective convenience of repair faced to the disposal of a product was not developed within this context.
Keywords: Circular economy | Design for Disassembly | Design for Repair | Gearmotor | Sustainability
Abstract: Nowadays, relevant design challenges include the need to use sustainable materials that allow designing products with a lower environmental impact. The construction sector is currently undergoing a slow but continuous change towards the use of sustainable materials. One of the most generalized methods for assessing sustainability is the Life Cycle Assessment (LCA), which aims to analyze and compare product alternatives to minimize the environmental impact of a product or a process. In this work, the LCA method has been applied to a mobile tiny house prototype built with sustainable materials, such as hemp bricks or wood. The ISO 14040 and the EN 15804 standards were followed. The life stages calculated are hemp cultivation and processing, production of the hemp brick, construction of the tiny house and transportation. The results show that the most significant impact comes from the production of titanium sheet metal, wood, bricks, and the transport of raw materials. The results suggest that hemp bricks are a sustainable alternative, but they need to be combined with the right manufacturing and transportation processes. This research offers insights into how to introduce sustainability in the building sector through early design decisions, such as the selection of materials
Keywords: Biomaterials | Life Cycle Assessment | Sustainable design | Tiny house
Abstract: The building design sector can benefit from the new opportunities offered by studies investigating people’s perception of urban and architectural spaces. It emerges from the literature that certain elements of environment settings and buildings such as edges, landmarks and materials can affect perception. However, their impact on people’s visual perception is still unclear, also because of the difficulty to report consciously what has been experienced. Technologies and tools such as mobile eye tracking (ET) give a chance to get insights into visual behaviors in real environments. In this work, the authors had the chance to conduct an experiment, where ET was used in a physical space of a tiny house prototype, which was the result of a research-industry cooperation project about real-world laboratories. An experimental activity involved 26 volunteers, who were asked to visit and freely observe the interior of the tiny house wearing ET glasses and fill in an evaluation questionnaire at the end of the visit. The first-view experience recordings of each visit of the tiny house were thereafter processed to acquire data to be put in relation with questionnaires’ outcomes. Preliminary statistical analysis showed potential relationships between areas of interest (AOIs), namely distinguishable elements of the tiny house, data, and evaluations. The time spent on some AOIs positively or negatively affected the evaluation reported by the questionnaire. It is also worth noting that, surprisingly, some AOIs deemed to be secondary affected the questionnaire ratings more significantly than the core qualities of the tiny house
Keywords: Buildings | Design | Eye tracking | Sustainability | User perception
Abstract: Besides the rising attention dedicated to environmental matters, there is the need to consider and make available for companies structured procedures that can guide managers and designers in the implementation of the right steps toward sustainability, considering their scope and context. The present paper presents a structured procedure able to guide managers and designers in the selection and implementation of the most effective analysis and capitalization tools and methods. Via the implementation in a company that produces armchairs, the method was revealed to be successful, also in an entity that approaches the environmental analysis topic for the first time. The enterprise was able to identify the best type of environmental assessment and the most accurate data collection strategy. The environmental analysis outlined the main product criticalities, both related to the employed materials and the management of armchairs at their End of Life (i.e. impact of polyurethane, disassemblability of wooden structure). Starting from the obtained results, design guidelines for designers and architects were defined and further detailed Life Cycle Assessments were planned.
Keywords: Decision-making tool | Eco-design | Environmental sustainability | LCA
Abstract: Intersecting value chains for the sake of sustainability is a very challenging target; however, eco-design can enable it. The high performing products required by the customers have boost the research, development and employment of composite materials, that often cannot be handled at their End of Life. The literature lacks hints and methodologies that support this. The paper presents a methodology whose core is the redesign of components, so that their material can be substituted with scraps deriving from other products. It aims to a symbiosis between enterprises that are active on different sectors; it is applicable to composites, as shown in the case study and offers an alternative to the cannibalization and low demand for remanufactured products because, unlike previous works, it investigates how materials can be employed in different products. The case study quantitatively evaluates the environmental benefits derived from the symbiosis of two companies, active in different sectors. Process scraps and product are analyzed; a re-design follows; the scraps are remanufactured and used as new material. The results highlight the need for a strong cooperation between companies, to take advantage of value hidden in their products. Future studies should focus on the economic impacts, considering not only the technical sphere, but also including the benefits echoing on company’s images.
Keywords: Circular economy | Composite materials | Design for de-manufacturing | Design for disassembly | Industrial symbiosis
Abstract: Augmented Reality seems a promising tool to provide engaging and effective educational experiences, thanks to its potentiality in stimulating intrinsic motivation, that could influence the learning process and the attitude of the users towards behaviours. This paper presents the Resized Plastic Augmented Reality learning experience, designed on the basis of Dunleavy's framework to provide a systemic overview of the microplastics issue to allow users to understand its mechanisms, educate them about their role in the system and help them to connect this information to their everyday actions.
Keywords: augmented reality (AR) | digital learning | sustainability | user experience
Abstract: Sustainability-related information affects people’s choices and evaluation. The literature has made significant efforts to understand the best ways of delivering this kind of information to shape consumer behavior. However, while most studies have focused on packaged products and direct information provided through eco-labels, preferences could be formed differently in other design domains. The paper investigates the effect of the perceived amount of indirect information on the evaluation of an architectural artefact. A sample of 172 participants visited a locally produced mobile tiny house, made with a considerable amount of sustainable materials. The same participants answered a questionnaire about their perceived knowledge, quality, appropriateness and sustainability of the tiny house. The general level of knowledge of the tiny house was used as a proxy of the amount of indirect information received. Although the knowledge of the tiny house was generally low, ratings regarding the other dimensions were overall extremely positive. In particular, no evident relation was found between knowledge of the tiny house and sustainability, while the latter is significantly linked to quality aspects. These outcomes deviate from the evidence from other studies; this might be due to indirect vs. direct information and the peculiarity of the study carried out in the field of buildings. The gathered demographic and background data of the participants make it possible to highlight the role played by gender and age in affecting the evaluations, but the absence of a significant impact of experience in the field, education and origin. The results are compared with findings related to the evaluation of sustainable products and green buildings in particular.
Keywords: awareness | background | buildings | consumer behavior | eco-design | indirect information | sustainability
Abstract: Industry 4.0 (I4.0), through the digitalization and interconnection of manufacturing processes, can offer opportunities to improve production systems' sustainability. Despite the increasing number of scientific review papers related to I4.0 and production sustainability, most approaches and tools for sustainability evaluation lack of a tangible implementation framework. The paper presents a framework that originated from the plant metabolism concept, a simplified version of industrial metabolism. It is based on Energy Material Flow Analysis (EMFA) and Life Cycle Assessment (LCA) tools for production plants' economic and sustainability assessment, using the I4.0 enabling technologies. A Multi-Criteria Decision Making (MCDM) method combines the two sustainability pillars for aiding companies in optimizing their production processes towards a reduction of energy/material flows. The combination of EMFA, LCA and MCDM tools into a plant metabolism-based model is the main novelty of this paper. The framework consists of three main phases. The first phase allows to model the manufacturing system by defining the plant layout, the assets, and the input/output flows. The second phase allows gathering information from the manufacturing plant to assess environmental and economic Key Performance Indicators (KPIs) following the LCA principles. The third phase consists of post-processing results, minimizing specific KPIs for establishing the optimal production scenario. A washing machine plant has been chosen as a case study to demonstrate the proposed method's capability in authentic contexts. Besides, the effectiveness in supporting companies in the analysis, identifying criticalities, and the proper energy and material flows management of production plants has been verified. Plant managers could use this framework for managing the production plans. From the scientific standpoint, the proposed method positively contributes to integrating the existing state of the art studies concerning the I4.0-related framework for the sustainability assessment and energy/material flows minimization of production systems.
Keywords: Energy/material flows | Industry 4.0 | Life cycle assessment | Manufacturing plant | Plant metabolism | Sustainable manufacturing
Abstract: One of the main aspects to increase the useful life of ErP and reduce waste generation is the product repairability. Key factors in assessing the ability to repair a product are the ease of disassembly, and the use of repairability indexes (i.e., eDiM, French repairability index, RSS, etc.). The goal of this paper is to retrieve eco-design guidelines analyzing the product repairability of target components belonging to four different types of electric ovens. The analysis adopts as baseline the report of the Joint Research Centre and the European standard EN 45554. Results provide interesting insights concerning the identification of disassembly issues and the mitigation of these hotspots through eco-design guidelines retrieved by the analysis of repairability.
Keywords: circular economy | cooking appliances | design for disassembly | design for repairability | disassemblability index | disassembly | eco-design | oven | repairability
Abstract: Traditional assembly processes such as screw fastening and riveting are increasingly being replaced by new processes such as adhesive bonding. Life cycle performance including fatigue and durability are critical, for which surface activation techniques are often used with the aim of improving both mechanical and life cycle performance. Within this context, the present paper aims to investigate the life cycle performance of adhesive bonding in relation to engineering polymers considering four surface pre-treatments: mechanical, chemical, plasma, and laser activation. The work focuses on two key aspects: (i) mechanical characterization of fatigue performance by assessing the useful life of joints, and (ii) environmental analysis through Life Cycle Assessment (LCA). The outcome of this study provides important insight into the development of laser and plasma technologies as sustainable surface activation methods for polymer joining methods. The substitution of traditional joining methods (i.e., bolting, riveting) with adhesive bonding will allow reductions in overall product weight to be achieved.
Keywords: adhesive bonding | assembly | design for assembly | environmental impact | fatigue | LCA | polymers | surface activation
Abstract: According to the European energy consumption reports, the highest energy consumption in residential sector is due to space heating, followed by water heating. Generally, the product used to warm water in residential building is the boiler where heat exchanger is the core of the system. The paper aims to develop a novel concept of heat exchanger by following eco-design actions retrieved by the analysis of life cycle performance. Several eco-design actions were put into practice to reduce the environmental issues in each phase of the life cycle. Concerning the materials and manufacturing phase, a novel design based on different material (i.e., stainless steel) was developed to replace a mix of materials (i.e., copper and aluminum alloy). Concerning the use phase, the overall product efficiency was increased allowing important savings in terms of gas/energy consumptions. Finally, concerning the end-of-life phase, brazing processes was replaced by other joining processes to increase component’s disassembly and varnishing process was avoided due to the better corrosion resistance performance of the stainless steel. The new heat exchanger shows better environmental performance in each Life Cycle Assessment indicator, saving more than 40% in CO2 emissions (GWP) in the whole product life cycle.
Keywords: Ecodesign | Energy consumption | Heat exchanger | LCA | Life cycle
Abstract: Sustainability considerations are traditionally difficult to trade-off with technical and business requirements in an early design phase. Hence, design teams need support to reflect early on in the process, on how sustainability may affect profitability and customer value fulfilment in the long term. The commoditisation of modelling and simulation techniques points to gamification and serious gaming as emerging approaches to raise awareness among the design team - as well as users and stakeholders - of the expected behaviour of a solution along its life cycle. The objective of this paper is to explore how serious games can be used to inform decision-makers about the value versus cost implications of being (or not being) 'sustainability compliant' when designing products and systems. The paper initially presents the findings from a descriptive study focused on the definition of 'design support' intended to raise sustainability awareness through serious gaming. It further describes the development, application and testing of one of such games for material selection in the aerospace industry.
Keywords: aerospace | decision-making | design space exploration | gamification | serious gaming | sustainability
Abstract: The literature lacks methodologies to make supply chains of composite materials circular. The proposed approach aims to transform scraps and off-specification products into secondary raw materials. Its novelty is to find innovative applications, instead of re-introducing scraps in the loop they come from. The case study investigates how scraps can be re-worked and re-used as raw material. First, the processes are analyzed; some components are then re-designed to be made of the discarded scraps (composites material). Results reveal that the symbiosis can ensure green, high performing products.
Keywords: circular economy | composite materials | design optimisation | ecodesign | industrial symbiosis
Abstract: De-manufacturing is at the basis of the Industry of the Future that competitively and sustainably will manage natural resources. This review retrieved 106 papers investigating the main obstacles that prevent Circular Economy from being a reality and the possible actions to overcome them. The analysis of the literature outlined a great discussion regarding the key topics of CE, de-manufacturing, disassembly and re-manufacturing. The CREDIT analysis proposed by the authors clusters all the risen barriers in 6 factors (Culture, Resources, Economy, Design, Information, Technology) and 18 sub-factors. The CREDIT analysis highlights among the two most critical barriers, the costs of the activities that occur at the EoL stage and the urgency to train designers to approach design thinking to the whole Product Lifecycle; here an innovative focus of research can be more incisive to overcome the actual barriers. Future research needs to focus the attention on the potentialities hidden behind a strong cooperation between academies and enterprises in order to find a balance among the several existing DfX or unveil and tackle their single limitations. Cooperation (industrial symbiosis, academy, etc) and innovative technological solutions of industry 4.0 can help tackle the obstacles.
Keywords: Circular economy | De-manufacturing | Design for de-manufacturing | Design for X | Industry 4.0
Abstract: Buildings are one of the largest contributors to negative environmental impacts because of the high consumption of energy and materials during their life cycle. The present work proposes a framework, able to make available information, both of general materials and specific commercial solutions; moreover, it overcomes the current state of the art, since, although focused on environmental sustainability, provides the opportunity to compare simultaneously several choices, also considering their properties and characteristics. Based on the proposed methodology, a tool structure and workflow are presented. The main potentiality is represented by the possibility of executing sustainability assessment already in the early stages of building design using the proposed tool when design choices significantly contribute to the global environmental impact of solutions. A validation procedure to quantitatively evaluate the main tool's limits and potentialities is proposed.
Keywords: Eco-design | Environmental impact | Environmental sustainability | Knowledge
Abstract: The total quantity of food waste in the European Union has been estimated at around 88 million tons per year. 53% of waste is thrown out by households; among this, up to 45,8% is avoidable and strictly related to users' awareness and behavior. In this context, the present research work aims to develop an integrated system able to reduce household food waste. It consists of a smart fridge able to track the stocks, a web application, and a set of services aimed at guiding the user in the food-related daily activities (proper food storage, purchase planning, etc.). Expiration date traceability and proper information management are the cornerstones of the proposed system. The system usability has been evaluated by a group of potential users; their feedback were also the basis of the environmental and economic analysis of the innovative system; the results show great potentialities in both fields.
Keywords: environmental sustainability | food waste | household waste | smart fridge
Abstract: Environmental policy has paid more and more attention to the impact of products and their life cycle, by establishing goals to be reached very shortly. Decisions at the design stage have a significant impact on the downstream activities, easing or making them difficult, although these take place at a very later time. The paper presents an approach to include in the traditional design process environmental sustainability aspects next to functional and economic drivers. Its novelty stands in the support for companies to structure the acquired knowledge about sustainability; recently a growing number of industrial companies faced the environmental question, and now the problem is not related to the absence of environmental data, but to its effective capitalization and related scarce strategies to support and improve it. The method, starting from the company's data and information, identifies the best strategies to simplify and effectively support the decision-making process. In this way, it not only allows the designers to take advantage of the information coming from product life cycle phases but also it makes possible to lower the environmental impact of a product through their decisions. The output of the method consists of charts, maps, and graphical materials; using them designers can compare, in environmental terms, design alternatives. Different combinations can be analyzed and interpolated to select the best design combinations. The implementation in an industrial case of the method and its output allow its applicability and validation. Starting from environmental data collected by the company over the years, usually used by the marketing department, a critical review has been carried out to derive, from them, useful tools to be used during design choices.
Keywords: Eco-design | environmental sustainability | knowledge
Abstract: De-manufacturing and re-manufacturing are well-known solutions for recovering value from products that have reached their End of Life (EoL) and thus reducing resource exploitation. Although such scenarios are implemented after the use phase, they must be considered since the very early stage of design. The paper proposes a methodology that can be applied at the design stage to detect space for product design improvements, also representing a baseline for organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly target components are identified according to their environmental impact; then the disassembly sequence is qualitatively evaluated, and successively quantitatively too. This leads to the identification and evaluation of different EoL scenarios. The application of the methodology to a professional espresso coffee machine highlighted a reduction of impacts up to 52% if re-using and re-manufacturing strategies are implemented.
Keywords: De-manufacturing | Ecodesign | Environmental sustainability
Abstract: Different studies in the scientific literature have shown how the transition towards a circular economy (CE) can benefit from product design, although maintaining a rather broad and qualitative perspective of analysis. This study investigates and compares which product design strategies (from routinely design, structural optimization, industrial design and systematic innovation) are most used by students and professional designers to implement different CE strategies (i.e., waste reduction, reuse, remanufacturing, recycling and biodegradability). Students’ data were collected from year projects and MSc degree theses based on real industrial case studies and carried out in two Italian engineering universities, while those of professional designers, were collected from selected scientific articles. Among the main outcomes emerged that the design strategies deriving from systematic innovation were preferred by students quite clearly. The design strategies referred to industrial design, e.g., user-centered design and timeless design were preferred by professional designers. The design strategies related to routine design, i.e., materials substitution, reducing resources and energy consumption, and structural optimization, were indistinctly used by both students and professional designers. The obtained results and their discussion can be useful during eco-design teaching to show the main gaps that students should fill in comparison with professional designers.
Keywords: Circular economy | Circular economy strategies | Design strategies | Eco-design | Teaching | TRIZ
Abstract: Additive manufacturing processes, such as Laser Additive Manufacturing (LAM), has become increasingly established in metal-processing industry offering versatile possibilities for producing individualized components or lightweight structures. LAM machines offer ecological and economical potentials due to comparatively low power and material demand. In general, Additive Manufacturing (AM), has been considered an alternative to the traditional manufacturing techniques, such as Subtractive Machining (SM), because allows the creation of new, light and complex products with an innovative design and manufacturing. Sustainability assessment is essential to identify and select the best technology among the alternative candidates. Sustainability of LAM needs to be evaluated for finding an optimal compromise between technical development and sustainability performance. The Life Cycle Assessment (LCA) methodology is applied to investigate the sustainability of Laser Engineered Net Shaping (LENS) by comparing that of the Computer Numerical Control (CNC) machining. The aim of this research is to analyze and compare the environmental impact between additive and subtractive manufacturing. In particular, CNC (SM) and LENS (AM) technologies have been chosen. A common spur gear has been defined as a case study. Therefore, the analysis allows to define the ecological characteristics of a new production technology compared to a gold standard such as CNC machining. Hence, the advantages and disadvantages of the reviewed additive technology are exposed. The ReCiPe midpoint results, shows advantages in term of environmental impact for the LENS manufacturing process, in particular for the damage to resource indicator.
Keywords: Additive Manufacturing | Ecodesign | Environmental sustainability
Abstract: According to the European Waste Codes 19.12.08, fibers derived from end-of-life tires (ELT) are classifies as a special waste to be sent to landfill or incineration with energy recovery. However, these activities would pose additional risks including soil pollution, and groundwater contamination. A change in the current ELT waste management practices is needed to reduce the environmental impacts. The aim of this paper is to present and investigate the technical and environmental feasibility of a circular economy path for ELT fibers. Several PP-based compounds have been manufactured and tested to verify the possibility of reusing ELT fibers in such an application. Then a Life Cycle Assessment (LCA) study has been carried out to compare the proposed reuse scenario with the two standard scenarios for ELT fibers. Reuse scenario leads to environmental savings for several impact categories, even if for some indicators the incineration is preferrable due to the additional resources and energy required needed to treat the dirty ELT fibers before reuse.
Keywords: Circular economy | End of life tires | Life Cycle Assessment | Reinforced compound
Abstract: Purpose: This paper aims to present the application of a tailored systematic engineering design procedure to the concept design of a small production plant for compostable packaging made by straw fibres and bioplastic. In particular, the obtained boxes are intended to be used for wine bottles. Design/methodology/approach: A systematic procedure has been adopted, which underpins on a comprehensive analysis of the design requirements and the function modelling of the process. By considering well-known models of the engineering design process, the work focuses on the early design stages that precede the embodiment design of the whole components of the plant. Findings: The followed design approach allowed to preliminarily evaluate different alternatives of the process from a functional point of view, thus allowing to identify the preferred conceptual process solution. Based on the identified functional sequence, a first evaluation of the potential productivity and the required human resources has been performed. Research limitations/implications: The procedure shown in this work has been applied only for the considered case of compostable packaging, and other applications are needed to optimize it. Nevertheless, the adopted systematic approach can be adapted for any context where it is necessary to conceive a new production plant for artefacts made by innovative materials. Originality/value: The work presented in this paper represents one of the few practical examples available in the literature where systematic conceptual design procedures are presented. More specifically, to the best of the authors’ knowledge, this is the very first application of systematic design methods to compostable packaging production.
Keywords: Circular economy | Conceptual design | Design methods | Engineering design | Packaging | Upcycling
Abstract: Nowadays, Industrial Robots (IRs) have become widespread in many manufacturing industries. Medium and high payload IRs cover a significant percentage of the overall factory Energy Consumption (EC). This article focuses on the IRs eco-programming to minimize the EC of a robot, being energy efficiency one of the fundamental aims of sustainable manufacturing. By leveraging well-known trajectory scaling methods, this research develops a novel, versatile, fast, and efficient process to define the IR optimal velocity/acceleration profile in time, keeping the geometry of the trajectory fixed. A complete IR system model that founds application in various types of 6 degrees of freedom articulated manipulators has been developed by considering electrical motors, actuator drive systems, and controller cabinet losses. A new optimization technique based on Dynamic Time Scaling of trajectories is presented, and the obtained results are compared with other methods used in the scientific literature. When performing critical path analysis, the EC of the robot system is estimated to be cut down, being the robot motion time fixed, by about 13% through this novel approach. The model has been validated through commercial software, and the proposed optimization algorithm has been implemented in a user-friendly interface tool.
Keywords: Eco-programming | Energy efficiency | Industrial robotics | Industry 4.0 | Sustainability | Trajectory scaling
Abstract: Industrial washing is essential in manufacturing and many other technological fields. Nowadays, steam washing is the most common technique. However, it involves chemical solvents which are potentially noxious for the environment and difficult to be disposed of. Therefore, there is a growing demand for alternative washing techniques that would ensure low operating costs, extensive productivity, high efficiency, environmental sustainability, good compatibility with different materials, and safe operating conditions. A fluidized bed (FB) represents a promising alternative to satisfy market requirements. In this study, a prototype of FB machine for the degreasing of pressure vessels was designed, built, and compared to the current solvent washing machine. The scope of the work is to assess the technical, environmental, and economic feasibility of a FB device for industrial washing. The analysis of variance (ANOVA) was carried out to detect the process parameters influencing the cleaning. The optimal process parameters were identified based on the experimental results. Life cycle assessment (LCA) and cost analysis were performed to evaluate environmental impacts, and operating costs. The results confirmed the validity of FB technology as an alternative to current washing techniques thanks to its higher cleanness, minor environmental impact and costs, and comparable productivity.
Keywords: Fluidized bed | Industrial washing | Life cycle assessment | Life cycle cost | Sustainable manufacturing
Abstract: Municipal waste management, especially in developed countries, has a significant impact on the environment and humans that need to be quantified and mitigated. This study aims to investigate and compare the environmental impact and occupational risks of the following three municipal waste collection methods in Italy: street bins, door-to-door collection, and a smart bins system. Six waste categories (paper, plastics, glass, metal, organic materials, and residual waste) are analysed. Environmental performances are calculated by the life cycle assessment (LCA) and material and flow analysis (MFA) methodologies. The ergonomic analysis is based on direct observation of municipal waste collectors and the application of standard assessment methods as RULA, NIOSH, and Snook Ciriello. Results: show that the smart bins collection method is environmentally more effective in all the impact categories considered, thanks to the better quality of collected waste. The residual waste flow directed to landfills has a lower value in the case of smart bins (36.63%) in comparison with door-to-door (52.90%) and street bins (89.56%). The use of smart bins allows higher environmental benefits, passing for the Climate Change impact category from −2.80E+01 kg of CO2eq. of the door-to-door system and −2.74E+01 kg of CO2eq. of street bins to −7.13E+01 kg of CO2eq. of smart bins. Regarding the transport phase, the smart bins system determines a reduction of the impact of about 60% if compared with the door-to-door system for all the impact categories considered. On the other hand, acceptable occupational risks result in street and smart waste collection methods, while poor ergonomics conditions are observed during the door-to-door collection. Containers lifting and emptying are the most critical tasks.
Keywords: Ergonomics | Life cycle assessment | Occupational risks | Sustainability | Waste collection
Abstract: Today, sustainability represents a fundamental concept to be developed and implemented in any industrial context. Therefore, it is essential to be able to measure sustainability performance by proper indicators, along the entire lifecycle and the value chain, considering environmental, economic, and social impacts. Moreover, every manufacturing company should have a specific measuring framework to calculate all the specific parameters. In this direction, the modern digital transition and Industry 4.0 (I4.0) technologies are proposing to transform human–machine relations, with a significant impact on social and organizational aspects. At the same time, digitization can help companies to define and implement sustainability by correlating production with proper evaluation metrics. The aim of this research is to provide a complete overview of sustainability Key Performance Indicators (KPIs) based on the Triple Bottom Line concept, referring to the three sustainability areas. Such an overview can be used by companies to set their specific KPIs and metrics to measure their sustainability level, according to their needs.
Keywords: digital transformation | Industry 4.0 | key performance indicator | smart manufacturing | sustainability | triple bottom line
Abstract: The production of textiles has a strong impact on the environment due to both over-consumption and the practice of production processes requiring the use of substances to manufacture, treat, and dye fabrics. In this context, finding new ways and solutions to transform used textiles into by-products or inputs for production is a trump card for the future of the textile sector. This may be accomplished by developing a circular economy policy, which involves large investments with a payoff only in a medium to long-term perspective. The main aim of the present work is to provide a set of guidelines to guide textile industries in the transition from traditional production processes to a systemic approach in consideration of the circular economy. This could leverage the efficient use of regenerated wool, the reduction (or lack) of waste production, and the management of the end-of-life of the product.
Keywords: circular economy | eco-design | recycled wool | textile industry
Abstract: The goal of pursuing the circular economy (CE) is spreading more and more in industry, also driven by the introduction of new regulations, considerably affecting product design. However, a quantitative and rigorous evaluation of the environmental impacts of the results obtained by different design strategies used to implementing CE is missing in the literature. Those available only evaluate certain aspects of the life cycle of few products, belonging to specific application fields, in a qualitative way or they refer only to the global warming potential. This study provides a quantitative assessment of the environmental impacts reductions arising from the application of some common design strategies for implementing different CE options (e.g. reuse, waste to energy, remanufacturing), by using some standard indicators. The results were obtained by manually analysing 156 selected case studies of comparative life cycle assessment (LCA), extracted from 136 scientific articles. In them, the environmental impacts of design solutions for CE are compared with those of other solutions were wastes are not exploited. The obtained results have been used to evaluate the different design strategies for CE and to hierarchize them based on environmental sustainability of the solutions associated with them. In addition, an economic evaluation of the strategies, based on the life cycle costing methodology and exploiting the data available in the same articles, was also provided. Among the main achievements, it was found that the hierarchy of the CE options, pursued by the design strategies, to improve environmental sustainability is different from that provided by other studies. In addition, the environmental benefits associated with the different CE options strictly depend by the applied design strategies and the considered products.
Keywords: Circular economy | Design strategies | Eco-design | Life cycle assessment (LCA) | Literature review
Abstract: The production of electric energy has been increasingly deriving from renewable sources, and it is projected that this trend will continue over the next years. Among these sources, the use of solar energy is supposed to be considered the main future solution to global climate change and fossil fuel emissions. Since current photovoltaic (PV) panels are estimated to have an average life of 25–30 years, their disposal is very important for the recovery of materials already used and for introducing them again into other processing cycles. Innovative solutions are therefore needed to minimize the emissions of pollutants derived from the recycling of photovoltaic panels that no longer work. In this research, an analysis of data related to durability, recyclability rates, different possible design layouts and materials used in the design and manufacture of PV panels was conducted. Through a Design for Recycling (DfR) and a Design for Durability (DfD), the authors identified the optimal materials, the best geometries and geometric proportions as well as the most convenient geometric and dimensional tolerances in the couplings between the layers and the components that comprise the panel to attain the most current, efficient and effective solutions for recycling end-of-life (EoL) PV panels and for longer durability
Keywords: coupling tolerances | EcoDesign method | end-of-life management | recyclability rates | sustainability
Abstract: The ease of disassembly and the application of repairability metrics are important in determining the ability to repair industrial products and goods (e.g., ease of Disassembly Method, Repair Scoring System, French repairability index, etc.). Increasing product repairability is a key aspect to tackle during the product development process aiming at the product lifetime extension and the reduction of industrial waste. The purpose of this work is to find eco-design actions by examining the ability to disassemble key components in different types of gas hobs. After the definition of target components, several disassembly tests were performed following the method proposed by the Joint Research Centre's report (Analysis and development of a scoring system for repair and upgrade of products) and the European standard EN 45554 (General methods for the assessment of the ability to repair, reuse and upgrade energy-related products). The Disassemblability Index of each priority part has been calculated, being able to verify that one of the factors that affect the most is the number of steps needed to remove the component. The outcomes offer interesting insights into the characterization of disassembly issues as well as for the identification of possible eco-design actions making the product repairability efficient and less costly.
Keywords: Cooking appliances | Design for Repairability | Disassembly | Eco-design | Sustainable design
Abstract: Joining is critical in shipbuilding impacting significantly on several aspects, i.e., properties, lightness, aesthetics, assembly/disassembly, maintenance employed workforce, emissions of fumes or gases. Consequently, it requires a significant study on impacts and risks. The aim of this work is to apply the Life Cycle Assessment to a friction stir welding process between aluminium and steel. The results confirmed that this welding is among the most sustainable (i.e., low energy, absence of filler, inert gases, and consumables). Moreover, was introduced a functional unit (i.e., length of weld divided by the thickness squared) that allows to compare different geometries and process parameters
Keywords: Energy | Joining | LCA | Risk assessment | Sustainability
Abstract: The paradigm of Industry 4.0 allows to increase the efficiency and effectiveness of the production. Companies that will implement advanced solutions in production systems will increase their level of competitiveness and will be able reach high market shares. The present paper is focused on the development of advanced digital solutions to be implemented on a close power loop test bench designed to test high power transmissions for naval unit. In particular, the test configuration consists of a back-to-back connection between two identical mechanical reducers. Since the efficiency of these systems are very high, it is not necessary to use large electric motors, thus managing to contain the operating costs of the testing phase. The particular test bench allows to size the electric motor simply based on the dissipated power by the kinematic mechanisms. By means of suitable sensors installed on the test bench it is possible to extrapolate countless technical data. The implementation of Industry 4.0 enabling technologies allows to evaluate the increase in efficiency compared to traditional systems in terms of reduction of noise and vibrations, efficiency of lubrication, reduction of consumption, installation and maintenance cost of the entire system.
Keywords: Cad modeling | digital transformation | Experimental tests | Industry 4.0 | Internet of things | Shipyard 4.0 | Sustainability | Test bench
Abstract: The optimization of the energy consumption of Industrial Robots (IRs) has been widely investigated. Unfortunately, on the field, the prediction and optimization strategies of IRs energy consumption still lack robustness and accuracy, due to the elevated number of parameters involved and their sensitivity to environmental working conditions. The purpose of this paper is to present, and share with the research community, an extensive experimental campaign that can be useful to validate virtual prototypes computing the energy consumption of robotic cells. The test cell, comprising a high payload IR equipped with multiple sensors and different payloads, is firstly described. The testing procedures are then presented. Experimental results are analyzed providing novel qualitative and quantitative evaluations on the contribution and relevance of different power losses and system operating conditions, clearly depicting the nonlinear relation between the energy consumption and various freely programmable parameters, thus paving the way to optimization strategies. Finally, all the experimental tests data are provided in the form of an open research dataset, along with custom Matlab scripts for plotting graphs and maps presented in this paper. These tests, which are verifiable via the shared dataset, consider the overall measured IR energy consumption (as drawn from the electric network) and highlight that, in some industrially interesting case scenarios, optimization potentials for energy savings of more than 50% are possible.
Keywords: Energy optimization | Experimental campaign | Industrial robotics | Industry 4.0 | Sustainable manufacturing
Abstract: As the society is already permeated by data, a data-driven approach to inform design for sustainable behaviour can help to identify misbehaviours and target sustainable behaviours to achieve, as well as to select and implement the most suitable design strategies to promote a behavioural change and monitor their effectiveness. This work addresses the open challenge of providing designers with a model for Human-Machine Interactions (HMI) that helps to identify relevant data to collect for inferring user behaviour related to environmental sustainability during product use. We propose a systematic modelling framework that combines constructs from existing representation techniques to identify the most critical variables for resources consumption, which are the determinants of potential misbehaviours related to HMI. The analysis is represented as a Behaviour-Inefficiency Model that graphically supports the analyst/designer to link user behaviours with a quantitative representation of resources consumption. The paper describes the model through an example of the use of a kettle and an additional application of the same approach to a washing machine, in order to point out its versatility for modelling more complex interactions.
Keywords: Behaviour Change | Big data | Process modelling | Product modelling / models | Sustainability
Abstract: Design for Sustainability is a research area based on a multidisciplinary approach, which has become increasingly important in recent years. Great attention is paid to the design of products that can impact on users' behaviours, through embedded smart technologies, e.g. Internet of Things (IoT). In fact, IoT systems are able to "dialogue" with the users, supporting the identification of any misbehaviour, and suggesting more sustainable ones. This paper presents a research aiming at supporting users towards more conscious food consumption in their daily life to reduce food waste. As a case study, it has been developed an interactive system in which chicken eggs are used as main communication element. Indeed, the environmental footprint of the egg industry is very heavy, and eggs are one of the main wasted food. The interactive system consists of a physical product, an eggs tray, integrating sensors and actuators for handling the interaction with users. It is accompanied by an interactive application for monitoring eggs consumption, displaying eggs waste statistics, and an Augmented Reality part for children, aimed to improve their awareness about food waste and the impact on their food habits through an "edutainment" approach.
Keywords: Industrial design | Sustainability | Virtual reality
Abstract: Shortcomings in manufacturing companies’ capabilities to execute circular economy business modelling have delayed a broader dissemination of circular business models beyond the stage of pilot projects in niche markets. Circular economy poses additional uncertainties for innovation that are not common for manufacturing companies’ traditional activities and business as usual. To cope with such challenges, they lack systematised practices and proactive advice, which are scant in available literature and approaches. The paper presents the development of the tool Circular Economy Business Modelling Expert System within manufacturing companies, intended to address these limitations. Based on systematised business modelling practices for circular economy and proactive advice on potential circular business model configurations, the expert system enhances strategic thinking for circular economy, supporting companies to come up with varied alternative business models with reasonable and viable value propositions to deploy circular benefits accordingly. The expert system was streamlined based on literature review, development, testing and evaluation with 12 practitioners from 10 companies. The paper discusses the main functionalities of the expert system and the results of its application into varied manufacturing companies. The application of the expert system has demonstrated to benefit companies with: inspiration for best practices on circular business modelling, a structured framework for confirming assumptions and a logic structure that prompts decision-making and reduces uncertainties.
Keywords: business model | circular economy | innovation | sustainability | tool
Abstract: With reference to assessing Circular Economy (CE) at the firm level, available literature reviews do not clarify what and how has to be actually assessed, while many assessment methods do not take into account the latest developments in the field. Furthermore, CE indicators are not explicitly linked to the firm's organizational functions involved in CE assessment. In order to address these issues and to favor practice-oriented CE assessments at the firm level, the present paper collects and analyses CE assessment indicators at their finest level of granularity, i.e. the CE metrics. By means of a systematic literature review, the work gathers insights from 130 documents belonging to scientific and practitioners’ literature, reviews existing CE metrics, and organizes them according to a new circular Value Chain framework. More in details, 365 different firm-level metrics have been identified and classified through said circular Value Chain framework, articulated into 23 categories. The vast majority of CE metrics are sufficiently general and applicable in assessment procedures irrespective of the firm size, the geographic location, the industrial domain and the selling strategy of the company. This aspect facilitates the fine-tuning of comprehensive CE assessment methods, which, as a result, can largely neglect contingency factors of the investigated firms. The framework and its categories help match CE metrics and organizational functions, thus facilitating the individuation of firms’ players involved in CE assessment. As the review highlights a remarkable fragmentation of current CE assessment models and diverging interpretations of CE's scopes, further implications on research and practice are discussed.
Keywords: Assessment | Circular Economy | Ecodesign | Metrics | Value Chain
Abstract: This Special Issue of Applied Sciences provides a collection of original papers on smart manufacturing technology with the aim of: examining emerging aspects of digitalization in the industrial and biomedical fields, as well as in business management and sustainability; proposing and developing a new approach useful for companies, factories, and organizations to achieve greater innovation and productivity—as well as sustainability—by applying smart manufacturing technologies; and exploring new ideas and encouraging research directions so as to obtain autonomous and semiautonomous processes, high-quality products, and services with a greater integration and interconnection of resources while reducing costs. The advantages of new methods and experimental results obtained in the collected contributions are discussed promoting further design, implementation, and application in the various fields.
Keywords: Assessment of digitalization | Computational geometry and CAD/CAM | Enabling technologies | Machine learning | Machine tools and manufacturing equipment | Manufacturing networks and security | Sustainability | Virtual/augmented reality
Abstract: The aim of this review article is the analysis of the results obtained from the scientific literature concerning all the phases that make up the life cycle of traction batteries for electric vehicles, in order to evaluate the associated environmental impact. In this regard, some scientific articles dealing with LCA studies concerning electric vehicles, with particular reference to batteries, will be examined. The revision of these articles will provide a general framework for the production, use and recycling phases of traction batteries. In particular, different parameters that influence the outcome of the LCA studies will be shown, parameters on which we can then act to improve the environmental impacts of the transition from internal combustion vehicles to electric mobility. These parameters are represented by the chemistry of the battery considered, aspect at the centre of the discussion, by the specific energy and efficiency of the battery pack, by the durability of the latter, but also by other aspects, such as the energy mix considered (both for the production phase, for the use phase and for recharging) and the functional unit chosen for the study, which determines a different approach, related to the analysis of a specific problem or aspect rather than another. Finally, the usefulness of the recycling practice and the related problems will be shown. In fact, the recycling must be perfected according to the battery chemistry in question to obtain benefits and better reduce environmental loads.
Keywords: Automotive | electric mobility | electric vehicles | global warming | green mobility | LCA (Life Cycle Assessment) | lithium batteries | resource depletion | sustainability
Abstract: The present study aims to validate a new research method called IDeS (industrial design structure) through the design of an electric bicycle for everyday city life. IDeS is the latest evolution of a combination of innovative and advanced systematic approaches that are used to set a new industrial project. The IDeS methodology is sequentially composed of quality function deployment (QFD), benchmarking (BM), top-flop analysis (TFA), stylistic design engineering (SDE), design for X, prototyping and testing, budgeting, and planning. The present work illustrates how to integrate the abovementioned design methods and achieve a convincing result. In going through the IDeS method step by step, we compare the different solutions on the market in order to understand which are the best performing products and to understand what is missing on the market. This method allowed us to design a bicycle that is as close as possible to the “ideal bike”, obtained with the top/flop analysis.
Keywords: Benchmarking (BM) | Industrial design structure (IDeS) | Quality function deployment (QFD) | Stylistic design engineering (SDE) | Sustainable design | Sustainable mobility | Top-flop analysis (TFA)
Abstract: Face masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment.
Keywords: Circular economy | COVID-19 | Ecodesign | Face mask | Sustainability
Abstract: Refrigeration applications is responsible for approximately 17% of the total electricity and around 8% of greenhouse gas emissions. This study presents a comparative life cycle assessment between two refrigeration systems, the first operating with a traditional fluid and the second with a natural refrigerant. The analysis was performed in accordance with international standards ISO 14040/14044 and adopted the attributional life cycle assessment approach. The functional unit was: ‘the storage of meat products, at the temperature of 0°C for a lifetime of 10 years, in refrigerating cells of a medium city supermarket’. Three different scenarios were analysed to investigate the effect of the energy mix in relation to the use of the machines. Results highlight how the choice of the refrigerating fluid has a higher effect on the environmental performances of the machine with a reduction of approximately 10% in a whole life cycle. Scenario analysis shows how the use of such machines in different countries allows a significant reduction of environmental impacts mostly related to the use phase. Eco-design actions were listed and connected with environmental hot spots specifying the life cycle phases and the environmental indicators involved.
Keywords: ecodesign | Life Cycle Assessment | Refrigeration technology
Abstract: Product eco-design includes several methodologies aimed at supporting companies in the development of sustainable products. Currently, this theme is assuming an important role in both the academia and industry worlds due to the increasing attention to environmental problems and the need for a transition toward circular economy business/organizational models. In this context, the present paper focuses on the industrial sector of espresso coffee machines manufacturing which has several unexploited potentialities. The analysis of the sector specificity (internal and external contexts), as well as of the product lifecycle allowed to define an eco-design framework to guide companies involved in the design and production of espresso coffee machines. Effective eco-design strategies should include the combined use of specific methods, tools and metrics to manage all the most important lifecycle phases (beginning of life, middle of life, end of life) during the design activities in order to set preventive actions that avoid future potential environmental impacts. Only in this way, the environmental and economic benefits of the circular economy paradigm (e.g. remanufacturing/reuse of selected components) can be practically exploited in real industrial contexts. The presented case studies confirmed that the application of design for disassembly rules positively contributes to increase the product performances during maintenance and end of life, while a re-design oriented to component modularity could be a key strategy to pursue remanufacturing for boilers, a key and expensive component included in espresso coffee machines.
Keywords: Circular economy | Coffee machine | Product eco-design | Recycling | Remanufacturing
Abstract: The use of engineering polymers for mechanical applications has seen increasing uptake due to properties such as low density, flexibility, ease of manufacturing and cost effectiveness. Despite these advantages, joining and assembly methods for these types of materials is still an open issue. Traditional assembly processes such as screw fastening and riveting are increasingly being replaced by new processes such as adhesive bonding. Engineering polymers, however, are difficult to bond using adhesives due to their low surface energy and low wettability. For this reason, surface chemical activation techniques with primers are often used. The utilization of various chemicals associated with such pre-treatments has a significant environmental impact. Within this context, the present paper aims to compare the environmental performance of four adhesive bonding pre-treatments: (i) mechanical (i.e., abrasion), (ii) chemical (i.e., primer), (iii) plasma and (iv) laser activation. The work was performed in three phases: (i) setup of the surface activation processes, (ii) mechanical characterization of bonded joints (static tests) and (iii) LCA analysis to evaluate and compare the different pre-treatments. The outcome of this study provides important insight into the development of laser and plasma technologies as sustainable surface activation methods for polymers through the creation of models correlating process parameters to the type of surface and joint strength.
Keywords: adhesive bonds | environmental impact | laser ablation | LCA | polymers | surface activation | sustainability
Abstract: This work presents the Special Issue on Innovative Textiles in the Era of Circular Economy, published in the Applied Sciences Journal. Such an issue was introduced to promote papers related to the textile field aiming at the development of a range of sustainable processes, technologies, products, and actions for the improvement of human well-being and social equity. Works proposed in this Special Issue are aimed at significantly reducing environmental risks and ecological shortcomings related to the development of textile products.
Keywords: Circular economy | Innovative textiles
Abstract: As nearly one third of global energy demand and CO2 emissions are attributable to manufacturing activities, the reduction of energy/resource consumption in the industrial sector is increasingly crucial. Therefore, research and innovation for the factories of the future is not only a matter of developing and integrating new technologies, but also a challenge to make manufacturing less dependent on energy and managed in an optimized way. This requires considering the efficiency of resource exploitation according to a systematic approach. To this aim, the present paper proposes a resource-saving tool, called Resource Value Mapping (RVM), and describes its application in a smart multinational company that produces electromechanical components for the automotive industry. The RVM tool is composed by three main modules that jointly allow the involved stakeholders to collaborate toward the optimization of the plant management: the Cloud data center that represents the repository of the collected real-time and offline data, the Analytics module that is responsible for data elaboration with the aim of calculating a set of key performance indicators useful to identify process inefficiencies, and the Web-based platform that represents the user interface of the tool. The case study demonstrated how such a tool allows (1) mapping the energy/resource flows to multiple levels (machine, line, plant), (2) characterizing them to identify the most critical activities that do not generate value and (3) supporting multiple stakeholders (plant manager, energy manger, operators) in the management of resource anomalies and definition of a more sustainable action plan.
Keywords: Energy efficiency | Industrial case study | Plant management | Resource-saving tool | Sustainable manufacturing
Abstract: De-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching demanufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.
Keywords: Circular economy | Demanufacturing | Ecodesign | EoL strategies | Mechatronics
Abstract: The fashion industry is responsible for a significant contribution to environmental pressure in the European Union. The present study aims to quantify the environmental impacts of a leather shoe production chain and identify the most criticalities in terms of companies, processes, and materials. The Life Cycle Assessment (LCA) methodology was used to assess the impacts related to the production of a pair of classic man leather shoes. Slaughtering and tanning resulted in the less environmentally sustainable stages for almost all the analysed impact categories, except water resource depletion and ozone layer depletion. Such outcomes are mainly due to the high distance from animals’ skin suppliers to slaughterhouses and tanneries, the use of lorries transport, and the large use of unsustainable chemicals to treat the leather. Going downstream, the main hot spot refers to the use of cotton during upper manufacturing and shoe assembly and finishing. Three alternative realistic production scenarios were simulated to find the best sustainable mix. They focused on alternative means of transport, the substitution of cotton, and green purchasing of upper and lining. An environmental impact reduction of about 30% can be obtained if all the suggested scenarios are implemented.
Keywords: environmental impact | footwear industry | Leather shoe supply chain | Life Cycle Assessment
Abstract: The development of new methods for the correct disposal of waste is unavoidable for any city that aims to become eco-friendly. Waste management is no exception. In the modern era, the treatment and disposal of infectious waste should be seen as an opportunity to generate renewable energy, resource efficiency, and, above all, to improve the population's quality of life. Northern Italy currently produces 66,600 tons/year of infectious waste, mostly treated through incineration plants. This research aims to explore a more ecological and sustainable solution, thereby contributing one more step toward achieving better cities for all. Particularly, this paper presents a conceptual design of the main sterilization chamber for infectious waste. The methodology selected was Design Thinking (DT), since it has a user-centered approach which allows for co-design and the inclusion of the target population. This study demonstrates to the possibility of obtaining feasible results based on the user's needs through the application of DT as a framework for engineering design.
Keywords: Design thinking | Eco-friendly city | Infectious waste | Resource efficiency | Sustainability | Waste management
Abstract: In the present paper, the environmental impact of an innovative technology, based on a zero-waste approach, for reclaiming carbon fiber prepreg scraps is assessed. The innovative process, proposed within the European project CIRCE, aims at reclaiming scraps produced during the cutting operation of virgin prepreg, avoiding the waste materials landfilling or incineration. The prepreg scraps were transformed into a ready-to-use raw secondary material by using two specifically developed automated systems for cutting and peeling of the scraps. By exploiting the prepared scraps in a compression molding process, recycled composite parts were produced. The evaluation of the environmental impact was carried out by means of the Life Cycle Assessment (LCA) approach, using the different impact assessment methodologies based on the Cumulative Energy Demand, Global Warming Potential and ReCiPe methods. Furthermore, tensile tests were performed at room temperature to investigate the mechanical properties of the recovered scraps products. In order to evaluate the environmental benefits of the innovative compression molding production with recovered prepreg scraps, the LCA analysis was also performed on two different traditional virgin production scenarios, i.e. the compression molding production with virgin prepreg and the autoclave processing with virgin prepregs, both used for the production of CFRP parts. The results show that the reclaim process leads to a strong reduction of the environmental impacts with respect to traditional composite production processes, demonstrating that such process can represent a valid alternative for a more sustainable manufacturing of composite products.
Keywords: Life cycle assessment | Prepreg scraps | Sustainability | Zero waste technology
Abstract: Reducing energy/resource consumption in production processes can significantly improve the environmental performance of manufacturing systems. This paper proposes a sustainable manufacturing method and tool and describes its application in a mechanical engineering company which produces automotive components. The tool allows to map the processes/activities and the related resources consumed, assess the efficiency through specific key performance indicators, identify process criticalities and thus set mitigation or improvement strategies.
Keywords: Energy efficiency | Energy management | Resource consumption | Resource mapping | Sustainable manufacturing tool
Abstract: Additive Manufacturing (AM), allowing the layer-by-layer fabrication of products characterized by a shape complexity unobtainable with conventional manufacturing routes, has been widely recognized as a disruptive technology enabling the transition to the Industry 4.0. In this context, the design of a Portable Assisted Mobile Device (PAMD) prototype was considered as a case study. The best practices of the re-design for AM were applied to three of the main structural components, and the most sustainable manufacturing approach between AM processes and the conventional ones was identified with respect to cumulative energy demand, carbon dioxide emissions and costs. The paper aims to promote the debate concerning the correlation between design choices, process selection and sustainable product development.
Keywords: Cost assessment | Design for Additive Manufacturing | Energy efficiency | Portable Assisted Mobile Device (PAMD)
Abstract: The paper presents an interactive methodology partially inspired by Japanese Kaizen concept and applicable in several industrial contexts; its implementation starts when different circumstances arise, e.g. an analysis is carried out and some criticalities emerge. The proposed methodology aims at continuously improving processes under the environmental and economic perspectives. It is made up of eleven steps that leads the group from the issue identification to a new status, improved than the previous one, and improvable than the following. The case study describes an implementation of the methodology in an Italian medium company acting in the clothing sector, demonstrating its validity and efficacy. It was launched in the firm after energetic and environmental analyses outlined material, energy wastes and environmental impacts; they were tackled, and results show the methodology to be successful both from environmental and economic point of view.
Keywords: Energy analysis | Environmental sustainability | Kaizen | Life cycle assessment | Sustainable manufacturing | Waste reduction
Abstract: The problem of packaging waste is deeply felt at international level, because each year hundreds of millions of tons of packaging are produced. While significant improvements have been made in the recycling of metal, wood, paper and cardboard packaging, plastic packaging still represents an open issue. The EU implemented regulatory actions to manage packaging and packaging waste by defining short-to-medium-term targets in terms of recycling rate. In such a context, the paper deals with an innovative composite material dedicated to the production of tertiary packaging, named NeoPalea. The proposed material is based on a combination of natural fibers and biodegradable biopolymers. It was prototyped to verify the performance as a potential substitute of the polymers currently used for packaging. The preliminary results obtained are encouraging.
Keywords: Biodegradable | Biopackaging | Bioplastic | Circular economy | Organic fiber | Recycling
Abstract: The aim of this survey is to provide an overview about what efforts have been spent during the years by academia and industry make cheese packaging more sustainable. The analysis followed is based on a structured methodology that has general validity. A large pool of scientific papers (403) and patents (2272) was analysed and classified by identifying the exploited eco-strategies, the materials, the types of protected cheeses and by intersecting them to obtain more detailed classifications. The review is accompanied by graphs and tables to explain trends and to select the most representative papers or patents. Overall, the most followed strategies are improving cheese shelf life with active/vacuum or modified atmosphere packaging and using biodegradable packaging. The preferred materials are bioplastic with vegetal origin, followed by synthetic plastics. A great attention is paid to soft cheese and its requirements, such as the rapid perishability. Some discrepancies were found, mainly between the strategies covered by the papers and the patents and partly on the claimed materials. In particular, over the years, papers have become more interested in increasing cheese shelf life, especially by using active packaging, while patents remain strongly focused on biodegradable packaging. Finally, while not excluding biodegradability, it would seem that the development of cheese packaging could lean more towards active and smart (sensorized) ones in the future, even in industry.
Keywords: Cheese | Food packaging | Survey | Sustainability
Abstract: This paper proposes a method of text mining to automatically retrieve knowledge from patents on how to recycle and reuse a waste. The main novelties are the introduction of a set of specific dependency patterns and the introduction of a partially revised TRIZ (Russian acronym for “Theory of Inventive Problem Solving”) ontology to classify the retrieved information. The proposed dependency patterns were manually extracted from a sample patents pool about waste recycling and reuse. The classification of the information is based on different classes: (1) what transformations can be carried out on the waste, (2) what technologies can be used to carry out these transformations, (3) what products can be obtained by transforming the waste, (4) what functions can be carried out by the waste, (5) with which technologies, and (6) on which entities. An automatic implementation of the proposed method, involving the manual check of the retrieved results, was tested through a case study about wood chip recycling and reuse. Compared to the dependency patterns from the literature, the proposed ones allowed to retrieve 28 % more pertinent information. This results mainly depends by better ability of the proposed patterns to better discriminate the relevant sentences from which to extract information, compared to the other patterns (i.e. + 40 %). The automatic classification of the information was also correctly performed: in almost each class, precision and recall were higher than 60 % and on average equal to 90 %.
Keywords: Circular economy | Dependency patterns | Patents | Text mining
Abstract: The article stems from the main informative gaps of Design for Sustainable Behaviour and discusses the paramount role of a data-driven approach to inform design. The article stresses how quantitative data can address global sustainability, determine behaviours to modify, measure the impact of new learned sustainable behaviours as well as support the definition of behaviour change strategies, widening the spatial and temporal scales to communities and longitudinal studies and reducing unpredictable biases coming from tacit knowledge externalization and interpretation.
Keywords: data mining | human behaviour | sustainable design | user-centred design
Abstract: Within the scope of Design for Sustainable Behaviour, the connection between behavioural change strategies and design idea generation has received limited attention. This paper highlights metaphorical thinking in product design to stimulate sustainable behaviour. In particular, the current study proposes a metaphor-based design method to guide designers on how to associate product features with behavioural and experiential cues through metaphors. We next report two design cases to evaluate this method. In the end, the shortcomings of current research and future developments are also discussed.
Keywords: design methodology | ecodesign | human behaviour | product design | sustainable design
Abstract: Eco-Design Strategies lead to both enhanced environmental sustainability and product differentiation, which, however, takes place only if observers recognize and value these advantages. To study this aspect, a sample of 40 product pictures has been administered to 12 subjects with experience in eco-design. They were asked to evaluate whether one or more Eco-Design Strategies (in Vezzoli and Manzini's version) were implemented in each depicted product. The outcome of the evaluation was an overall fair agreement. Useful information for eco-design is inferred from nuances of the results.
Keywords: design evaluation | ecodesign strategies | product design | sustainable design
Abstract: Documentation and conservation of underwater cultural heritage (UCH) are crucial to preserving humankind's history and traditions, safeguarding tangible testimonies of past human life while ensuring its accessibility to future generations. The TECTONIC (Technological Consortium TO develop sustainability of underwater Cultural Heritage) project is promoting an intersectoral collaboration between academic and non-academic professionals (i.e., archaeologists, conservators, geologists, engineers, etc.) working on different topics related to UCHs, to find solutions to the issues still existing in the field. The overall aim is the exchange of skills for the improvement and assessment of innovative materials and techniques to develop solutions and marketable products for the conservation and management of the UCH, sustainably. To achieve its overall aim, TECTONIC is undertaking activities driven by the following objectives: (a) the study, documentation, and mapping of selected UCHs; (b) the creation of decision-support tools for UCH risk assessment in a changing environment; (c) the initiation of conservation studies and protocols for conservation activities; (d) the development of open and low-cost robotic solutions for the inspection of UCH; and (e) the raising of public awareness and knowledge about UCH. All the objectives are devoted to stimulating new sustainable ideas that would bring the growth of cultural tourism and the development of new marketable products by capitalizing on the research results.
Keywords: Archaeology | Materials | Protection | Sustainability | Tourism | Underwater cultural heritage (UCH); 3D
Abstract: Nowadays, packaging represents around 35% of the total municipal solid waste yearly generated. This paper aims at analyzing a methodology to support the redesign of a sustainable packaging for the household appliances. The approach considers the environmental impacts related to geometrical parameters and materials. In particular, here the test case is focused on the packaging for kitchen hoods. Through the proposed method, based on the use of virtual prototyping tools, an eco-design approach has been identified to analyze the main environmental impacts. A packaging redesign has been performed to reduce waste and increase the use of the components from the perspective of the circular economy. This study has been performed in accordance with the international standards ISO 14040/14044, by using a Life Cycle Assessment (LCA) from Cradle to Gate. The integration with a CAD tool has been considered to redefine the packaging shape, materials, and internal composition, keeping the same standard requirements (performance, security, etc.). LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA). A comparison has been proposed between a traditional packaging for household appliances and a new solution which integrates an interior part in molded pulp. The results show the possibility to cut down the environmental impacts of approximately 15% by a redesign with a molded pulp interior and avoiding EPS structures.
Keywords: Molded pulp | Sustainable design | Sustainable packaging
Abstract: Internal insulation is a typical renovation solution in historic buildings with valuable facades. However, it entails moisture-related risks, which affect the durability and life-cycle environmental performance. In this context, the EU project RIBuild developed a risk assessment method for both hygrothermal and life-cycle performance of internal insulation, to support decision-making. This paper presents the stochastic Life Cycle Assessment method developed, which couples the LCA model to a Monte-Carlo simulation, providing results expressed by probability distributions. It is applied to five insulation solutions, considering different uncertain input parameters and building heating scenarios. In addition, the influence of data variability and quality on the result is analyzed, by using input data from two sources: distributions derived from a generic Life Cycle Inventory database and "deterministic" data from Environmental Product Declarations. The outcomes highlight remarkable differences between the two datasets that lead to substantial variations on the systems performance ranking at the production stage. Looking at the life-cycle impact, the general trend of the output distributions is quite similar among simulation groups and insulation systems. Hence, while a ranking of the solutions based on a "deterministic" approach provides misleading information, the stochastic approach provides more realistic results in the context of decision-making.
Keywords: Energy efficiency | EPD | Historic building | Internal insulation | LCA | Monte-Carlo simulation | Uncertainty analysis
Abstract: Energy efficiency standards in the context of cooking appliances are an important strategy to preserve electric energy consumption and to reduce greenhouse gas emissions. Although successful standards and labels have been launched in many countries, the implementation of eco-design directive does have not a unique structure, energy policy and consumers understanding. The aim of this study is to describe the environmental performance of cooking appliances in real use conditions derived by the analysis of food habits and diets in EU countries. The final goal is to link cooking performance and the environmental features (i.e. energy consumptions, emissions) in different cooking conditions. The work is structured in three phases: (i) definition of recipes based on food habits in EU countries, (ii) development of energy consumption tests for each recipe, and (iii) characterization of eco-design actions considering the diet specificity. The outcome of this study provides interesting insights in the development of sustainable products for different markets as well as the definition of dedicated eco-design initiatives.
Keywords: Cooking appliances | Ecodesign | Food habits | Product development | Sustainability
Abstract: Aviation strives today to include environmental and social considerations as drivers for decision making in design. This paper proposes a serious game to raise awareness of the value and cost implications of being 'sustainability compliant' when developing aerospace sub-systems and components. After describing the development of the game, from needfinding to prototyping and testing, the paper discusses the results from verification activities with practitioners, revealing the ability of the game to raise sustainability awareness and support negotiation across disciplinary boundaries in design.
Keywords: critical materials | decision making | risk management | serious game | sustainability
Abstract: The transition towards more sustainable practices is one of the main challenges that companies and organizations are currently facing. The use of serious games and gamification has shown to be effective in creating awareness and support learning in many contexts, including sustainability education of practitioners and future ones. We performed a systematic mapping of the use of games on sustainability for companies and organizations. The results show current trends and voids in research concerning a series of categories and provide insights on possible future directions in this area.
Keywords: Gamification | Human behaviour | Sustainability | Sustainable design
Abstract: Leather material is used in different industrial sectors that generate high quantities of wastes, especially during the cutting phase. This study aims to propose a reuse path for leather scraps focused on the production of an insulation panel. The technical feasibility evaluation demonstrated that the innovative material has acceptable performance to be applied as thermal insulation for building. The preliminary life cycle assessment study compared the environmental performance of the innovative panel against a polyurethane panel. Results demonstrated benefits in some impact and damage categories (-36% in terms of climate change and -15% in terms of ReCiPe single score).
Keywords: Circular economy | Leather scraps | Life cycle assessment | Thermo-acoustic insulation
Abstract: In last years, increasing attention on environmental matters is registered and companies are forced by legislations, normative and protocols to increase the environmental performances of their products. Observing the industrial context, it emerges there are several barriers for an effective implementation of eco-design strategies inside design departments. The paper presents a knowledge repository tool, which aims at both, providing a basic guide on environmental sustainability issues and favoring knowledge sharing among design departments. The tool is mainly based on a structured repository in which company materials, organized in different forms, are collected. The repository contains training section, well-organized guidelines, company specific knowledge and milestone. The implementation of the tool in two industrial companies is presented and results of usability and tool effectiveness discussed.
Keywords: Company knowledge | Environmental sustainability | Knowledge sharing
Abstract: Packaging waste is cause for serious concern. Each year hun-dreds of millions of tons of packaging are produced, therefore solutions that drastically reduce their environmental impact are urgently needed. While the recycling of metal, wood, paper and cardboard packaging has been significantly improved, an efficient recycling or disposal of some plastics is not yet feasible. The European Union implemented various regulations concerning packaging and packaging waste and set some relevant short to medium-term targets for recycling and disposal rates. Over the last decade, the global trend of the eco-sustainable packaging market is heading in the same direction. The aim of this research is to develop an innovative and sustainable composite material for the production of tertiary packaging based on the combination of nat-ural fibres and biodegradable biopolymers. In particular, the experimental application entailed the creation of prototypes con-sisting of a material made of straw and biodegradable plastic Mater-Bi® which is named NeoPalea. The new material was pro-totyped to verify its physical characteristics and to determine its potential use to replace current not-biodegradable packaging. The results show a good match with the characteristics of current poly-mers, suggesting that this material can be used as a potential sub-stitute in packaging applications.
Keywords: Bio-packaging | Biodegradable | Bioplastic | Circular economy | Composting | Recycling | Straw
Abstract: This paper provides an overview of the environmental impacts of diofferent types of passenger transportation means (i.e., bicycles, motorcycles, cars, buses, trains, and airplanes). The method has been applied to the European scenario. The study was performed by using life cycle assessment in accordance with international standard ISO 14040/44 for assessing the CO2 eq., SO2, and PM10 of the transportation means by exploiting data (i.e., vehicles features and environmental impacts) from 24 scientific papers from the literature that have been manually analyzed. The functional unit is defined as the impact per 1 passenger over 1 km. The study identified that planes are the most impacting for CO2 eq. with up to 380 g/pkm, while cars are the most impacting for SO2 with up to 1.78 g/pkm and PM10 with 0.98 g/pkm. Electric and hybrid models proved to be significantly better than others, while buses are the most sustainable in general. Referring to the overall European scenario, cars constitute up to 95% of the overall impacts. By comparing some improvements for reducing the impacts, it emerged that the limitation of diesel cars along with the increase of buses and trains are the most eoffective. The provided outcomes may be useful for legislators, manufacturers, and users for favoring the choice of the transportation means in a more environmentally conscious way.
Keywords: Electric transportation | Environmental impact | Life cycle assessment (LCA) | Transportation impact
Abstract: The aim of this paper is to provide an overview about the distribution of the environmental impacts arising from different domestic functions (i.e. storing and preparing food, washing dishes, watching television, reading, personal cleaning, washing, drying and ironing clothes, home cleaning, heating, cooling, lighting and mobility) typically performed within a common family home. The method has general validity but for reasons related to the availability of data in the literature it has been applied by way of example only in three EU countries: Italy, Germany and France. The study was performed by using Life Cycle Assessment (LCA) in accordance with international standard ISO 14067 for determining the carbon footprint of different alternative domestic components, mainly appliances, for each function, by exclusively exploiting data from scientific literature. The functional unit is defined comprising all most common referred domestic activities of a family of three members within a house of 100 m2. The study identified an optimal configuration and a worse one of the domestic components in terms of carbon footprint, showing how a wise choice of these can greatly affect the overall impact by reducing it compared to the worst by more than 22% in Italy, 45% in Germany and 56% in France. The average impacts between the optimal and the worst configurations of Germany are higher than Italy (+27%) and France (+44%). Considering the impacts among the domestic functions in the average configuration, mobility was the most impactful in all the three countries (35–48%), followed by heating (17–26%), personal cleaning (10–13%) and washing dishes (8–13%), while cooling is consistent only in Italy (13%), against 5% in Germany and 2% in France. The study also allowed to identify some generic criteria for defining the optimal configuration: the increasing in energy efficiency, the choice of the least impacting energy source depending on the geographical location, ensuring water savings and the early replacement of older domestic components. Finally, by comparing some common measures for improving the domestic sustainability, these criteria proved to be more effective than solar systems and improved electricity mix. The provided outcomes may be used by manufacturers for improving their product in a more sustainable way as well as by legislator and end user, respectively for boosting and choosing the greener domestic components.
Keywords: Appliances carbon footprint | Environmental impact | Household carbon footprint | Life cycle assessment (LCA)
Abstract: This paper proposes a set of Eco-guidelines for supporting designers in developing new greener products and processes. The first requirement that a guideline should have is to be sufficiently general to cover every kind of problem and at the same time sufficiently specific to bring the user closer to the solution without requiring too much personal inspiration. This balance was searched by adopting one of the most known systematic innovation techniques: TRIZ (Russian acronym of Theory of Inventive Problem Solving). In the literature, there are many examples of integrations between Eco-guidelines and problem-solving methods, but the solutions that are suggested, however effective, are not necessarily eco-friendly. To overcome this problem, the authors propose a rigorous ontology indicating how to apply a specific problem-solving strategy onto a specific part of the problem, trying to make the user aware of the environmental consequences of his design changes. The result of this work is a set of 59 guidelines. The article explains the birth of each guideline, the way in which they were adapted with respect to the known technique, and the motivation for which they should generate greener solutions, in light of the results of an experiment involving engineering students in real industrial cases.
Keywords: Eco-guidelines | Ecodesign | Problem-solving | TRIZ
Abstract: In a sustainable management of logistics, transportation plays a crucial role. Traditionally, the main purpose was to solve the Vehicle Routing Problem minimizing the cost associated with the travelled distances. Nowadays, the economic profit cannot be the only driver for achieving sustainability and environmental issues have to be also considered. In this paper, to satisfy the intricate limits involved in real vehicle routing problem, the study has been structured considering different types of vehicles in terms of maximum capacity, velocity and emissions, asymmetric paths, vehicle-client constraints and delivery time windows. The firefly algorithm has been implemented to solve the vehicle routing problem and the TOPSIS technique has been applied to integrate economic and environmental factors. Finally, to prove the effectiveness of the proposed approach, a numerical example has been proposed using data provided by a logistic company located in Sicily.
Keywords: Decision making | Firefly algorithm | Sustainability | TOPSIS | Vehicle routing problem
Abstract: At present, energy consumption strongly affects the financial payback period of industrial robots, as well as the related manufacturing process sustainability. Henceforth, during both design and manufacturing management stages, it becomes crucial to assess and optimize the overall energy efficiency of a robotic cell by means of digital manufacturing tools. In practice, robotic plant designers and managers should be able to provide accurate decisions also aimed at the energy optimization of the robotic processes. The strong scientific and industrial relevance of the topic has led to the development of many solutions but, unfortunately, state of the art industrial manipulators are equipped with closed controllers, which heavily limit the feasibility and performance of most of the proposed approaches. In light of the aforementioned considerations, the present paper presents a novel simulation tool, seamlessly interfaced with current robot offline programming tools used in industrial practices, which allows to automatically compute energy-optimal motion parameters, thus reducing the robot energy consumption, while also keeping the same productivity and manufacturing quality. The main advantage of this method, as compared to other optimization routines that are not conceived for direct integration with commercial industrial manipulators, is that the computed parameters are the same ones settable in the robot control codes, so that the results can automatically generate ready-to-use energy-optimal robot code. Experimental tests, performed on a KUKA Quantec KR210 R2700 prime industrial robot, have confirmed the effectiveness of the method and engineering tool.
Keywords: Automatic code generation | Energy optimization | Industrial robotics | Industry 4.0 | Robot offline programming | Sustainable manufacturing | Virtual prototyping
Abstract: Littering is a highly diffused anti-environmental and anti-social behavior, especially among young people. Furthermore, cigarette butts are one of the most littered items and are responsible for both severe environmental damages and high clean up expenses. The aim of this project is to design an interactive ashtray for the campus environment to limit the cigarette butts littering behavior in an engaging and effective way. Qualitative and quantitative data are collected. Coded observations were implemented through the research process, including the 2 pre (without the prototype) and 2 pros (with the prototype) sessions. Also, user experience test and one to one interview were conducted for deepening the understanding of the littering phenomenon and the reasons behind in the behavior among young people. The prototype indeed reduced the number of cigarette butts littering among observed behaviors of 156 students, especially in male sample. Final results indicate the behavior change of disposers is moderated by other factors, as the environmental cleanliness. Future development is also discussed.
Keywords: Design for Behavior Change | Gamification | Multisensory product experience | Sustainability | User centred design
Abstract: The scarce availability of water in highly populated cities is about to become a social problem. While the water service companies work on improving the distribution network in order to reduce losses, it is evident that one of the main problems is due to an excess of use of this resource by users. This consumption is relatively controlled when excessive consumption is clearly associated, in the consumer mind, with high costs. However, when users are in public places they tend to consume water because of a loss of correlation with costs. In this paper, we describe the design of a device to be installed in public environments, which aims to reduce the consumption of water. The device measures in real time the flow of water and sends the user visual and sound information trying to create a link between consumption and costs. The device has been installed in a university campus bathroom and has been tested. Test results show a reduction in water consumption, especially in the interactive prototype approach compared to the conventional treatment. Further modifications for future development of the interactive device is also discussed.
Keywords: Design for sustainable behavior | Multisensory product experience | Sustainability | User centred design | Water conservation
Abstract: In last years, an increasing attention on environmental matters is registered. Companies face environmental matters to increase the environmental performances of their products, forced by numerous legislations, normative and protocols and induced to the growing attention of consumers toward environmentally friendly products. However, observing the industrial context, it emerges there are several barriers for implementation of eco-design strategies inside design departments. The paper presents a tool which aims at both providing a basic guide on environmental sustainability issues and favouring the knowledge sharing among the different actors of the product design process. The core of the tool is a repository in which company materials, organized and collected in different forms, are collected. The repository contains several parts: training, guidelines, knowledge and milestone, accordingly to the type, structure and form of materials stored. The eco-design tool functions, structure, and workflow are presented and then preliminary test cases are described.
Keywords: Design engineering | Ecodesign | Sustainability
Abstract: Industrial manufacturing is the largest end-use sector in terms of both final energy demand and greenhouse gas emissions (more than 30% of the total); its increase is rapidly altering the world climate. The need to mitigate the environmental impacts of manufacturing processes makes energy efficiency a key success factor for sustainable production. Accordingly, the scientific community's interest in energy management has grown considerably, resulting in several literature reviews on energy modelling and production systems analysis, emissions calculation, sustainability tools and benchmarking techniques. However, a comprehensive analysis of methods and tools aimed at improving energy awareness and assessing their effects on energy efficiency is lacking. To address this gap, this paper undertakes a systematic literature review of energy assessment methods and tools. From the 1367 papers retrieved by searching scientific literature databases, 64 scientific articles met the inclusion criteria and were analysed in detail. The study aims to provide scholars with a picture of the current state of scientific research and to identify the scientific works that could help industry practitioners in energy management. Following the ISO 50001 framework, the methods and tools were divided into three main groups (i.e. energy analysis, energy evaluation and energy-saving measures methods) and the specific findings relating to each group were synthesized. Finally, the paper addresses unresolved issues and challenges and makes suggestions for future research directions.
Keywords: Energy assessment tools and methods | Energy efficiency | Industry | Manufacturing processes | Systematic literature review
Abstract: The growing attention to environmental sustainability is not reflected in the effective implementation of ecodesign principles in the industrial context. The main barriers are related to the propensity of companies to optimise only specific aspects directly affected by legislation and to the higher priority given to other drivers such as performance, cost and aesthetics. The present paper faces this issue by proposing an approach to support designers to concurrently deal with environmental, economic and technical performance in all the key phases of the product development process (selection of drivers, evaluation of design alternatives, preservation, sharing and reuse of knowledge, etc.). The approach is grounded on a multi-criteria index, called Product Impact Index (PII), which allows weighting different drivers, verifying the satisfaction of the company’s goals, and comparing different design solutions. The method has been successfully applied in two case studies to support the redesign of a cooker hood and a freestanding cooker. Results confirmed its usefulness and effectiveness in overcoming the common barriers to ecodesign implementation in the industrial context.
Keywords: ecodesign | engineering design for sustainable development | knowledge management | Multi criteria index | sustainability
Abstract: The assessment and monitoring of energy and resource efficiency is an essential activity toward the implementation of sustainable manufacturing practices. Existing energy/resource assessment methods and tools are not based on a comprehensive approach, lack on the use of specific key performance indicators, are dedicated to expert stakeholders and do not provide useful suggestions for improving production systems. This paper proposes an innovative method, called Resources Value Mapping that aims to map and classify activities and related energy/resource consumptions according to lean philosophy principles (value-added, non value-added, waste). A user-friendly map and two efficiency indicators (Cost Index and Muda Index) are proposed to quantitatively support the identification of criticalities related to activities, processes, lines, plants, etc., and to successively guide the decision-making process during the improvement strategies implementation. The method has been used to analyze a manufacturing plant that produces cooking appliances. The case study demonstrated the applicability of the method in real industrial contexts and its effectiveness in identifying the energy/resource flows (electricity and compressed air), departments (sheet department) and lines (mechanical and hydraulic presses) for which the waste and non value-added consumptions are prominent. The analysis highlighted that less of 20% of the resources consumed during the process creates value, offering wide margins for improvement. Finally, it aided the definition of an action plan leading to relevant reduction of resource consumptions, economic savings and environmental benefits.
Keywords: Energy efficiency | Key performance indicators | Lean manufacturing | Resources Value Mapping | Sustainable manufacturing
Abstract: One of the commitments of the European community is to increase the share of energy produced from renewable sources in order to minimize costs and risks, or that the society has to bear to produce electricity, in addition to compliance with European pollutant gas (CO2, SO2, NOx and PM) objectives. An ever-increasing body of research aims to study the actual energy savings of buildings with systems of renewable energy production implemented with storage systems, evaluating the potential energy savings. To date, however, the analysis of the environmental impacts of the total life cycle was not taken into account. Thus, no assessment has been made whether the amount of energy saved (esaved) outweighs the energy needed for production, use and disposal (einvested). This study presents an approach for the analysis and evaluation of the energy flows, environmental impacts and cost of a new modular and integrated system of renewable electricity generation and intelligent electrochemical storage systems, that allows auto-production and self-consumption of electricity in residential buildings (smart grid). The results show that the total impact depends on the configuration chosen, from the consumption profile and the types of users. If the duration of use is short and the savings achieved are small, the expected benefits will not always be achieved, in terms of costs for the user and the environmental impact.
Keywords: Energy efficiency | Environmental impact | Self-consumption
Abstract: End-of-life vehicles (ELV)represent a relevant waste source in Europe, even if ELV recycling is a priority of the European Union waste legislation and Environment Action Programmes (EAPs). End-of-Life Tires (ELTs)constitute a relevant portion of ELV waste. Textile fibre, which is a relevant portion of the ELT material, is considered as a special waste (European Waste Catalogue – EWC code 19.12.08). The main problem related to textile fibre is its contamination with rubber which does not allow to obtain a pure product economically and qualitatively useable. The aim of this paper is to illustrate an innovative technology for ELT fibre's recycling, which allows to transform textile fibre into a useful secondary raw material for different applications. In particular, the use of ELT fibre as additive for bituminous conglomerates has been investigated. The different processes have been analysed from an environmental point of view, applying the Life Cycle Assessment methodology. It came up there is an impact reduction in case the ELT fibre is reused as additive for bituminous conglomerates, instead of disposing it (through incineration). Moreover, the financial and economic sustainability of the related technological process has been evaluated to check whether the process is sustainable in the long term. Starting from the results of the Life Cycle Assessment, economic performance indicators have been calculated, by applying the European Commission methodology for cost-benefit analysis. According to the present cost-benefit analysis, in the medium and long term the system is financially viable, and the high economic profitability makes the process economically sustainable. Furthermore, a sensitivity analysis as well as a risk assessment have been carried out in order to identify critical variables, evaluate risks and define risk mitigation measures. According to the sensitivity analysis performed, the project is not highly risky since even in the worst scenario the possible loss is moderate. Based on the results of this analysis, it can be concluded that this ELT fibre's recycling system can be replicated across Europe, conveniently fostered by national policies (such as subsidies, value added tax etc.).
Keywords: Circular economy | Cost-benefit analysis | End-of-life tyres | Second applications
Abstract: The wine production constitutes an important sector for the Italian economy. Most of the wine producers are associated in local consortiums, which include small family companies involved in the production of similar products. This study aims to investigate the implementation of circular economy opportunities in the wine production chain. In particular, the reuse of glass bottles in the Piceno wine consortium (central Italy) has been analyzed to quantify the potential environmental benefits. The standard Life Cycle Assessment (LCA) methodology has been used to compare the standard scenario (recycle of glass) against the circular scenario (cleaning and reuse of bottles within the local consortium). Results demonstrate that the reuse of glass bottles leads to relevant benefits in all the considered impact categories (ReCiPe Midpoint method). The avoided use of virgin glass offsets the additional resources (e.g. energy) consumed during the cleaning of used bottles.
Keywords: Circular economy | LCA | Reuse | Wine bottle
Abstract: The increasing focus on environmental practices has led academia and industry to address eco-sustainability in different ways. Recent improvements to supply chain management (SCM) have also included environmental sustainability as a key factor, in addition to common drivers such as risk, supply quality, and cost. Although several eco-sustainable SCM approaches have been proposed, often those solutions remain too theoretical and difficult to implement. This paper contributes to this research topic by proposing a web-based platform capable of tracing suppliers and related processes along the entire product supply chain (SC). This platform is a powerful decision-making tool for improving overall SC environmental sustainability. A structured methodology is defined and implemented that can efficiently model complex SCs, share data between actors, and measure its environmental sustainability. To demonstrate the platform applicability and validate its effectiveness in industrial settings, a case study of industrial partners involved in the production of leather shoes is provided.
Keywords: Environmental sustainability | Supply chain management (SCM) | Supply chain traceability | Web-based platform
Abstract: What does it make some sports such as off-road motorcycle to be perceived as non-environmentally-friendly? Are the activities themselves or the actual and/or traditional way of their fulfillment? How is it possible to make them more environmentally sustainable without giving up the fun? This paper aims to give an answer to these questions, analyzing the case of off-road motorcycling. It is clear that some of negative consequences of such sport are due to the bad behavior and scarce ecological awareness of its practitioners, while it is often neglected that other aspects are related to the present characteristics of its means: the motorcycles. The present work, starting with the analyses of the environmental damages related to this sport, tries to give an answer focusing on the technical aspects of actual motorcycles that can be related to such damages. In particular, the authors propose the application of an integrated eco-innovation and technical contaminated approach for the design and development of a new concept of off-road motorcycle to meet the requirements of low environmental impact and light weight of the vehicle, while maintaining the pleasure of riding in the nature.
Keywords: Eco-innovation | Environmental impact | LCA | Off-road motorcycle | Rear suspensions | Terramechanics
Abstract: Although product design targets success, the achievement of success is rarely verified or insightfully explored because of difficulties in measuring this term. The present paper addresses design research by proposing a procedure to extrapolate success of products by means of the vast knowledge made available by the scientific literature and the Internet at large. The final achievements are constituted by an algorithm to perform information search about product success and a success scale to be used as an ordinal variable in a posteriori studies involving large numbers of products.
Keywords: Information retrieval | Product development | Product failure | Product success | Sustainable design
Abstract: Nowadays, several consumer goods are sold with an energy label which provides energy information about consumption, efficiency, noise, and performance. These labels are regulated by local energy policy and governments. Because of this, customers are becoming increasingly aware about the energy efficiency and consumption of products such as household appliances. In Europe, several household appliances are involved in the European Energy Labelling Directive. Therefore, the manufacturers are paying attention to Ecodesign tools and methods to support the development of eco-innovation and sustainable products. In this context, the paper proposes a design methodology to support the development of efficient cooker hoods using an approach based on a constraints satisfaction problem model. The scope of the proposed research is to reduce the time-to-market of household appliances considering the energy efficiency optimization from the early design phases to the embodiment design. A Case Based Reasoning is also implemented to define a pre-configured model of product before the CSP optimization. The CSP model has been developed as an analytical system, which can predict the energy label achieved by a final prototype of a cooker hood. The interaction of such tools can fill the gap between traditional design methods and eco-innovation approaches, in order to support the designer in the decision-making activity. The test case shows a cooker hoods optimization based on a CSP tool, developed using a programming framework based on Gecode platform.
Keywords: Case-based reasoning | Constraints satisfaction problem | Design optimization | Ecodesign | Energy label | Virtual prototyping
Abstract: The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively −86% and −45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications.
Keywords: Circular economy | Cost–benefit analysis | End-of-life tyres | Feasibility evaluation | Reuse scenario
Abstract: One of the most actual and consistent driver for industry is sustainability. This topic opens at different problems according to the three sustainability pillars: environment, economic, and social. Regarding the last one, there is a lack for methodologies and tools. Moreover, industries are crossing today a crucial transition in terms of technologies. The so called fourth industrial revolution is ongoing. This is a second challenge for industries that needs to be competitive reducing their time to market integrating new technologies on their production sites. From these perspectives, this work is aimed at highlighting the role of the humans under the Industry 4.0 paradigm. A new transdisciplinary engineering method to favour the sustainable manufacturing is provided. It allows designing a connected environment (IoT framework) aimed at measuring and promoting social sustainability on production sites. The work also remarks the relationship between social sustainability and productivity. Indeed, optimizing the human works permits to improve the quality of the working conditions while improving efficiency of the production system. The case study was performed at an Italian sole producer. The goal of the analysis was to improve and innovate the finishing area of the plant from a social point of view with the perspective of digital manufacturing. An IoT framework has been installed, without affecting the productivity, and the work of 2 operators has been compared in order to identify common problems and define a synergy strategy.
Keywords: Digital manufacturing | Human factors | Industry 4.0 | Social sustainability | Sustainable manufacturing
Abstract: The growing attention on environmental and social sustainability issues is pushing companies to move towards new business models. In this context, PSS (Product Service System) seems to be one of the most suitable model to foster the transition to sustainable economic models. The PSS is composed of a mix of tangible products and intangible services. The method proposed in this paper supports the PSS design. The objective of this work is to integrate careful assessment of economic, environmental and social sustainability supporting the transition towards new business models and strategic company decision-making. The method is then validated through a case study on the management of urban waste.
Keywords: Environmental Sustainability | Product-Service System | PSS method | Social Sustainability
Abstract: End of Life Tires (ELT) constitute a major portion of End of life Vehicles (ELV). The treatment process of ELTs is primarily aimed at recovering steel and rubber, which jointly represent the main portion of the ELT material and are currently applied in different sectors. During the treatment of ELTs, other sub-products are generated in significant quantities (about 10-15% in weight), as textile fibers that currently are landfilled or used for energy recovery. The aim of this study is a comparative evaluation of the environmental impacts related to three different end of life scenarios for the textile fibers. In addition to landfilling and incineration, this study considers the possibility to reuse textile fibers as reinforcement in bituminous conglomerates. Results obtained through the Life Cycle Assessment study confirms that the reuse scenario leads to a relevant reduction of impacts in terms of Global Warming Potential. However, by considering other environmental metrics the reuse scenario is not always the less impactful one.
Keywords: End of life tires | environmental impact | fiber material | second life application
Abstract: In the last decade, the environmental sustainability has become an important issue that drives more and more the consumer decisions. Consequently, industrial companies are called to meet the growing demand for more sustainable products. Especially in the furniture sector, customers pay serious attention to the emissions that negatively affect human health and so they request products with low volatile organic compounds (VOCs) emissions. This represents a big challenge because it requires the strictly control of each component provided by all the supply chain actors through expensive laboratory tests. For this aim, the present paper proposes a method to estimate the total VOCs emissions of furniture products starting from the characteristics of all semi-finished products (e.g., geometric features, product composition, process information and functionality) and through the definition of an appropriate impact scale based on historical data. It allows making the supply chain (SC) more sustainable, limiting costly chamber tests.
Keywords: Furniture products | Indoor air quality | Product declaration | Sustainable Manufacturing | VOC emissions
Abstract: Human factors are fundamental for manufacturing sustainability, which is determined by social, economic and environmental performance. However, there is a lack of engineering methods and tools that are able to integrate their analysis with product and process optimisation according to sustainability principles. The present study proposes an analytical approach to support sustainable manufacturing (SM) by analysing the so-called user experience (UX) of manufacturing and assembly processes starting from the early design stages. Considering both behavioural and cognitive aspects of manufacturing UX and defining a corresponding model, it is possible to estimate the UX impact on manufacturing sustainability for a certain product and its related processes. The proposed method is implemented in a computer-based framework, which can be easily integrated with environmental and cost assessment tools to integrate all three SM aspects. Finally, a case study focused on automated machines is presented; the proposed approach was used to redesign the machine to improve its economic, environmental and human-related impacts. The industrial case study provides concrete evidence of the achievable benefits of applying the proposed model in manufacturing practice. Indeed, the case study demonstrated how the manufacturing and assembly process of a specific machine was optimised by simplifying the product structure, changing the adopted materials and creating more human-centred activities. The new solution is more sustainable due to time savings (−30%), cost reduction (−20%), reduced environmental impact (−25%) and improved UX (+30%).
Keywords: computer-integrated approach | design for manufacturing & assembly (DFMA) | human factors | sustainability | user experience
Abstract: Nowadays industrial products require numerous aspects to be integrated and optimized contemporarily and interactively: mechanics, electronics, system control, management of material and information flows, interfaces, human-product interaction, as well as impacts on environment, costs and human factors. As a consequence, the design of industrial products has to combine new advanced functionalities and high performances by limiting production cost as well as environmental and social impacts. It means that the entire industrial system has to be designed looking towards sustainability. While attention to cost and environmental performance is not new, the analysis of social-related aspects is basically unexplored for industrial products. Achieving social sustainability includes forecasting human behaviours, actions and reactions, analysing how human beings interact with objects, tools, devices and interfaces, and assessing their physical and mental workload. The present research proposes an analytical approach to support the design of industrial products by providing an early sustainability assessment of the three aspects of sustainability (environment, cost and people). It adopts a feature-based approach and a set of key performance indicators (KPIs) to assess the sustainability of the manufacturing and assembly processes and to support an easy and preventive analysis during product design. The paper presents the application of such method to industrial cases.
Keywords: Design for Sustainability | Feature-based Analysis | Key Performance Indicators | Sustainability Assessment | Sustainable Manufacturing
Abstract: Design for serviceability begins with understanding the customer needs related to availability, reliability, accessibility and visibility, and aims at designing optimized systems where maintenance operations are easy and intuitive in order to reduce the time to repair and service costs. However, service actions are difficult to predict in front of a traditional CAD model. In this context, digital manufacturing tools and virtual simulation technologies can be validly used to create mixed digital environments where service tasks can be simulated in advance to support product design and improve maintenance actions. Furthermore, the use of human monitoring sensors can be used to detect the stressful conditions and to optimize the human tasks. The paper proposes a mixed reality (MR) set-up where operators are digitalized and monitored to analyse both physical and cognitive ergonomics. It is useful to predict design criticalities and improve the global system design. An industrial case study has been developed in collaboration with CNH Industrial to demonstrate how the proposed set-up is used for design for serviceability, on the basis of experimental evidence.
Keywords: Design for serviceability | Digital Manufacturing (DM) | Ergonomics | Human-Centred Design (HCD) | Sustainability | Virtual Simulation
Abstract: This paper presents a novel robot simulation tool, fully interfaced with a common Robot Offline Programming software (i.e. Delmia Robotics), which allows to automatically compute energy-optimal motion parameters, for a given end-effector path, by tuning the joint speed/acceleration during point-to-point motions whenever allowed by the manufacturing constraints. The main advantage of this method, as compared to other optimization routines that are not conceived for a seamless integration with commercial industrial manipulators, is that the computed parameters are the same required by the robot controls, so that the results can generate ready-to-use energy-optimal robot code.
Keywords: Computer-Aided Robotic tools | Delmia Robotics | Energy Optimization | Industrial Robots | Sustainable Manufacturing
Abstract: Analysis of human-related aspects is fundamental to guarantee workers’ wellbeing, which directly limits errors and risks during task execution, increases productivity, and reduces cost [1]. In this context, virtual prototypes and Digital Human Models (DHMs) can be used to simulate and optimize human performances in advance, before the creation of the real machine, plant or facility. The research defines a human-centred methodology and advanced Virtual Reality (VR) technologies to support the design of ergonomic workstations. The methodology considers both physical and cognitive ergonomics and defines a proper set of metrics to assess human factors. The advanced virtual immersive environment creates highly realistic and interactive simulations where human performance can be anticipated and assessed from the early design stages. Experimentation is carried out on an industrial case study in pipe industry.
Keywords: Digital Human Model | Ergonomics | Human-Centred Design | Sustainable Manufacturing | Virtual Reality
Abstract: In this paper we describe the design of a smart alarm clock, conceived as a persuasive system to foster a sustainable urban mobility. Automatically retrieving and elaborating information available on the web, such as means of transport and weather forecast, the device is able to suggest to the user the most sustainable travelling solution, to help him/her to wake-up and reach the destination on time. Following a user-centered design approach the elaboration of the best travelling solution takes also into account, together with his/her next day appointments, user's needs and habits such as: The time he/she needs to get ready in the morning; his/her travelling preferences. A functional prototype has been built to test the effectiveness of the device using as a context the city of Milan.
Keywords: Design for sustainable behaviour | Multisensory product experience | Smart mobility | Sustainability | User centred design
Abstract: As creativity is increasingly important in order to achieve differentiation and competitiveness in industry, designers face the challenge of conceiving and rating large numbers of new product development options. The authors’ recent studies show the effectiveness of ideation procedures guided by stimuli that are submitted to designers in the form of abstract benefits. A rich collection of said benefits has been created to this scope; more specifically, the authors have performed a detailed clustering of the categories described in TRIZ ideality, i.e. useful functions, attenuation of undesired effects and reduction of consumed resources. Aspects related to sustainability and environmental friendliness manifestly appear in the list of stimuli and these issues are reflected in several ideas emerged in initial experiments. However, many promising product development objectives conflict with sustainability or, at least, their adherence to eco-design is arguable. The paper assesses the share of ideas that are supposed to comply with sustainability in experiments described in recent literature. Subsequently, it intends to stimulate a discussion about the introduction of measures to attract attention of designers on sustainability in the critical early product development stages also when green aspects do not represent the fundamental driver to achieve greater customer value. As well, it discusses which sustainability aspects are worth being considered adequately during the very early design phases and which ones could result as exceedingly constraining.
Keywords: Idea generation | Product value | Sustainability | TRIZ | Very early design phases
Abstract: In Europe, kitchen hoods currently come with an energy label showing their energy efficiency class and other information regarding the energy consumption and noise level, as established by the European Energy Labelling Directive. Because of recent regulations, designs of cooker hoods must consider new issues, such as the evaluation of the energy efficiency, analysis of the energy consumption, and product lifecycle impact. Therefore, the development of eco-driven products requires Ecodesign tools to support eco-innovation and related sustainability improvements. The scope of the proposed research is to define a method and an agile and affordable platform tool that can support designers in the early estimation of product energy performance, including the calculation of energy efficiency indexes. The approach also considers the use of genetic algorithm methods to optimize the product configuration in terms of energy efficiency. The research context concerns large and small productions of kitchen hoods. The paper describes the methodological approach within the developed tool. The results show a good correlation between real efficiency values and calculated ones. A validation activity has been described, and a test case shows how to apply the proposed approach for the design of a new efficient product with an A-class Energy Efficiency Index.
Keywords: Ecodesign | Energy label | Knowledge-based engineering | Optimization | Product configuration | Virtual prototyping
Abstract: During recent years the European Ecodesign Directive has introduced big changes in the design methodology of several energy-using products including consumer goods such as ovens, washing machines and kitchen hoods. Additionally, the introduction of the Energy Labelling Directive pushes manufacturers to implement new energy-saving features in many energy-related products sold in Europe. As a consequence, several companies have been encouraging the improvement of their energy using products paying attention to the related selling cost. Eco-driven products require eco-design tools to support the eco-innovation and the related sustainability improvement. The main scope of the proposed re-search is the reduction of the time-to-market for the energy-using products such as kitchen hoods. In this context, the paper aims to provide an approach to support a pre-evaluation of the energy labeling related to kitchen hoods. A prototypical software tool has been developed in order to simulate the energy performance of new kitchen hood configurations in term of energy efficiency. The approach also considers the introduction of virtual experiments in order to calculate the performance of virtual modules. This tool makes the product-engineer more aware in the decision-making about the energy-saving. As a test case, different product configurations have been compared analyzing the energy labelling and the overall energy performance.
Keywords: Ecodesign | Energy efficiency labeling | KBE | Kitchen hoods | Virtual prototyping
Abstract: In recent years, the growing attention to environmental challenges has shown that these issues are becoming of more and more interest to both research and industry. Companies are expected to ensure their products are fully traceable and more sustainable, which requires the involvement of all of the actors in the production network. According to this aim, this study proposes a structured approach that uses the traditional traceability concept as a means to identify the main information needed to assess environmental impacts along the whole supply chain (SC). The proposed approach is composed of four main steps: (i) SC modelling to identify all stakeholders and their inter-relations, (ii) data sharing to collect all relevant data, (iii) data elaboration to calculate performance at different levels of detail and (iv) result interpretation to optimise the SC. The distributed implementation of the approach at different SC steps represents a useful means to practically realise a sustainable SC management. A case study involving a leather shoe SC is used to demonstrate the effectiveness of the approach in identifying criticalities, supporting the selection of the most appropriate suppliers and correctly setting a management strategy towards the optimisation of internal and external traceability and environmental sustainability performances.
Keywords: Collaborative network | Environmental sustainability | Sustainable supply chain | Sustainable supply chain management | Traceability
Abstract: Nowadays the efficient use of energy has acquired a significant importance in the industrial sector. Moreover, stringent regulations on environmental impact lead companies to tread a path towards energy efficiency in short terms to avoid penalties. The goal of this work is to propose a structured method to perform fast and simplified energy assessments. The latter starts from a proper classification of process data, passing through an effective mapping in order to identify criticalities that have to be solved by innovative action plans. Method will be tested on a real case study.
Keywords: data management | energy efficiency | process innovation | sustainable manufacturing
Abstract: Circular economy is recognized as the most effective economic model to face issues related to waste management and resource scarcity. This requires to efficiently manage the End of Life (EoL) phase, which represents the joining link to close the product lifecycle. The objective of this paper is the definition of a framework to monitor product EoL during the most affecting phases. It is founded on the concept that it is better to prevent issues, by designing optimized products and creating favourable operative conditions, other than solve problems related to EoL. The EoL-oriented framework integrates three innovative resources: (i) a Design for Disassembly Tool to identify product criticalities, (ii) a Disassembly Knowledge Database to support the redesign phase and (iii) a Collaborative EoL platform for the sharing of relevant data and materials. The final aim is to provide companies with a set of integrated methodologies and tools able to support the decision-making process at different levels (from conception to EoL management), in order to design product with improved performances in terms of disassemblability, maintainability, de-manufacturing and EoL.
Keywords: Circular economy | Design for X (DfX) | Product lifecycle management (PLM) | Sustainability
Abstract: Sustainability is becoming one of the main drivers of the modern product and system design. However, sustainability assessments are usually carried out at the end of the design process to check the validity of the decisions already taken. As a consequence, when targets are not achieved, numerous time-consuming iteration loops are necessary to optimize the initial solution. The paper merges functional-based and design-to-cost approaches to propose a CAD-based platform able to assess product lifecycle costs and impacts from the earliest design stages by configuring and assessing feasible design solutions. It considers both economic expenses and environmental impacts during all phases of product lifecycle on the basis of the company knowledge.
Keywords: CAD | Design-to-cost | functional design | lifecycle approach | sustainability
Abstract: Although factories are becoming smarter and more and more automated, thanks to ICT penetration, process performances still highly depend on 'humans in the loop' who have to carry out their tasks by perceiving and understanding increasingly complex multidimensional data sets. Forecasting the human behaviours and assessing how human factors affect the process performance are very difficult but fundamental for strategic decision-making and sustainable manufacturing. In this context, the research highlights the need of predictive methods to design human-centred smart manufacturing systems from the early design stages as an important part of the overall assessment of process sustainability. The paper defines a model to early assess human factors to be integrated with other existing models (i.e., cost estimation and lifecycle assessment) to evaluate manufacturing process sustainability. The proposed integrated method can be fruitfully used to support the design of sustainable manufacturing systems by taking into account also the impact on workers. An industrial case study focusing on packaging machines design is presented to demonstrate the validity of the proposed method and its adoption to propose re-design action promoting sustainability.
Keywords: Design for sustainability | Human factors | Key performance indicators | KPIs | Sm | Sustainability assessment | Sustainable manufacturing
Abstract: Anticipating the analysis of cost and performances before the detailed design stage is difficult, but possible thanks to a synthetic analysis of the manufacturing knowledge, a successful collaboration among the numerous actors involved, and a methodology able to highlight the cost issues and to guide a costoriented machine design. This paper presents a methodology integrating Design for Manufacturing and Assembly (DFMA), Design To Cost (DTC), and Value Analysis (VA) to support companies in cost-effective machine design and costoriented re-engineering. This paper demonstrates the validity of the proposed methodology by an industrial case study focusing on packaging machines, developed in collaboration with a world leader company in tissue packaging machines. Thanks to the proposed approach, the company was able to identify those parts to be re-engineered (e.g., oversized parts, parts with unnecessary tolerances, similar parts to be merged into a unique one, common groups to be reused in similar machines, parts or material substitutions, wrong suppliers' selection) and possible technological improvements. A significant cost optimization and global machine sustainability improvement were achieved on a specific packaging machine line, mainly due to product structure simplification, part reuse, improved design solutions, and optimization of selected manufacturing processes.
Keywords: Cost optimization | Design for Manufacturing and Assembly | Design To Cost | Sustainability | Value analysis
Abstract: The energy consumption and electrical characteristics of a novel direct current (DC) power supplied industrial robot prototype are compared and analyzed with a state of the art alternating current (AC) supplied industrial robot. An extensive set of experiments shows an important reduction of the total energy consumption for different electrical power profiles measured in various robot trajectories with specific working temperatures. The recuperated energy is also analyzed in the different scenarios. Experimental results show that a DC type robot can be up to 12.5% more energy-efficient than an equivalent AC type robot.
Keywords: AC/DC micro-grids | energy consumption | energy efficient robotics | energy measurements | sustainable manufacturing
Abstract: In order to achieve more sustainable development processes, industries need not only to improve energy efficiency and reduce costs, but also to increase the operators’ wellbeing to promote social sustainability. In this context, the present research focuses on the definition of a methodology based on human-centred virtual simulation to improve the social sustainability of maintenance tasks by enhancing system design and improving its serviceability. It is based on the operators’ involvement and the analysis of their needs from the early design stages on virtual mock-ups. The methodology proposed merges a protocol analysis for human factors assessment and an immersive virtual simulation where immersive serviceability simulations can be used during design phases. To demonstrate the effectiveness of the proposed method, an industrial use case has been carried out in collaboration with CNH Industrial.
Keywords: Ergonomics | Human-Centred Design (HCD) | Serviceability | Sustainability | Virtual simulation
Abstract: Several Ecodesign methods can be found in literature, though none has ever really established itself industrially. On the other hand there is a plethora of methods for problem solving which do not necessarily produce greener solutions. Among these, the most promising is the TRIZ methodology for inventive problem solving. TRIZ is not meant for Ecodesign, but recently more and more eco-applications can be found in the literature. This paper aims at providing a new interpretive key of the TRIZ methodology from an environmental point of view, to distinguish which tools and principles are readily applicable to Ecodesign from those that need to be customized. A detailed analysis of the best-known tools of the methodology applied to Ecodesign is presented, as well as how they have been integrated into a single operational tool called i-Tree.
Keywords: Ecodesign | Environmental assessment | Environmental improvement | LCA | TRIZ
Abstract: Designing sustainable systems is challenging since economic, environmental and social factors must be considered. It is particularly hard when heavy interaction with humans take place. The smart home is an example: it is finalized to increase the comfort of dwellings and optimize the devices’ behaviour as well as the consumed resources in relation to the users’ habits. Elderly represent a special category of users characterized by specific needs: therefore, the design of a smart home is particularly critical since elderly require support in their everyday activities, control of their own lifestyle monitoring, and consciousness about the devices’ behaviours. As a consequence, smart home are usually complicated, expensive and not suitable for elderly. This paper defines a methodology to design sustainable smart home systems for elderly. An intelligent network monitoring the users’ wellbeing and assuring a controlled use of objects and resources is defined and verified on a case study.
Keywords: Assistive technologies | Distributed information management | Smart home | Smart objects | Sustainability
Abstract: This paper proposes a method to drive process innovation toward the increase in efficiency of a production plant. The work defines a structured method, supported by a classification tool, to correctly organize whole plant information with a mayor focus on energy consumptions. The method was tested in a medium enterprise with the target to increase the efficiency of the entire production plant. The method is the basis for a web application tool. A correct data management permits to plan the best practices to improve processes and systems involved in terms of environmental and economic impacts, meaning a process sustainable innovation.
Keywords: data management | energy efficiency | energy measurement | lean manufacturing | process innovation
Abstract: End-of-Life Tires (ELT) are one of the main source of waste in End of Life Vehicles (ELVs). Textile fibers represent about 10% in weight of the ELT and every year, in Europe, about 320,000 tons of dirty fibrous material must be disposed as special waste. Studies show that the fibrous material can be used in second life applications, reducing the environmental impacts of tires disposal, but none of these researches quantitatively evaluate the achievable benefits. This study presents a comparative evaluation of the environmental impacts of the tires considering different scenarios for the end of life of the textile fibers material.
Keywords: End of life tires | environmental impact | second application
Abstract: In the last century, the quality factor is seen as the key to success of each industry. In industrial companies, total quality management (TQM) principles have been introduced to achieve specific innovations in product and process development, though the continuous improvement (CI). Simultaneously, industrial companies think sustainable manufacturing as a means to create innovation, respecting environmental, economic and social themes. In fact, when a product reach the maturity stage of its life cycle, the improvements are no longer on product itself, but on its production process, optimising energy and resources use, eliminating waste, adopting sustainable end-of-life (EoL) policies, and reducing costs. Indeed, industrial processes require large consumption of resources during the product manufacturing phase. In this context, the paper aims to create a link between sustainable manufacturing and TQM principles, defining a new methodology that uses life cycle assessment (LCA) to assess the impacts of industrial processes inside the existing 'plan, do, check, act' (PDCA) method.
Keywords: Continuing improvement | Energy efficiency | Process lca | Process monitoring | Quality management | Sustainability | Sustainable manufacturing
Abstract: The adoption of an eco-design approach is a key challenge for the total quality environmental management (TQEM). Recently, several eco-design methodologies have been presented, but none can be easily integrated in the traditional design process of manufacturing companies. The research presented in this paper aims to define a methodology, called G.EN.ESI, to help designers (especially those ones without a specific know-how on eco-design), during the development of sustainable products. In order to aid designers in the assessment of the environmental and cost impacts of a product, also a set of software tools have been defined. Using such a platform, the designer is supported by a robust workbench to perform all the analyses required to evaluate the product eco-sustainability for each phase of the product lifecycle. This software platform is essential for companies which want to implement the G.EN.ESI methodology without upsetting their own consolidated modus operandi and the internal organisation.
Keywords: Eco-design | Eco-design methodology | Environmental assessment tools | Environmental strategy | Integrated platform | Supply chain management | Sustainable design | Total quality environmental management | TQEM
Abstract: Design for Sustainability (D4S) and LifeCycle Assessment (LCA) methods usually focus on one single aspect of sustainability at a time (e.g., environmental issues, ergonomics or costs) and are usually applied when the industrial system is already created, so that only corrective actions can be taken. In this context, the present research highlights the need of predictive methods to design sustainable system, able to provide an early holistic assessment from the early conceptual stages, and defines a set of models of impact able to assess all aspects of sustainability (i.e., environmental, economic and social) by proper key performance indicators (KPIs) from the early design stages. An industrial case study is presented to show the application of the proposed models on industrial manufacturing systems and demonstrate their validity in estimating the global impact on sustainability, including also human factors.
Keywords: Design for Sustainability | Design Methods | Human Factors | Key Performance Indicators (KPIs) | Lifecycle analysis | Sustainable Manufacturing
Abstract: The number and breadth of eco-improvement methods has been steadily rising over the past decades to include design for X methods and more problem-solving oriented software, based on the Russian TRIZ methodology, and the integration of CAE software and optimization techniques. With such heterogeneous approaches, there is a need of a quantitative classification scheme to help the designer in choosing the best method for each environmental scenario. In the present paper, we propose a comparison and classification, based on the number of eco-guidelines and their distribution on standard impact categories, of 17 of the most known Eco-improvement methods. Furthermore, we propose an interactive selection software that gives the user the ability to exclude or give priority to some life cycle phases and impact categories; empowering him to select the most fitting eco-improvement method or to create a list of the relevant eco-guidelines across all the analysed methods.
Keywords: Classification | Ecodesign | LCA
Abstract: This paper quantitatively reports about a practical method to improve both position accuracy and energy efficiency of Servo-Actuated Mechanisms (SAMs) for automated machinery. The method, which is readily applicable on existing systems, is based on the 'smart programming' of the actuator trajectory, which is optimized in order to lower the electric energy consumption, whenever possible, and to improve position accuracy along those portions of the motion law which are process relevant. Both energy demand and tracking precision are computed by means of a virtual prototype of the system. The optimization problem is tackled via a traditional Sequential-Quadratic-Programming algorithm, that varies the position of a series of virtual points subsequently interpolated by means of cubic splines. The optimal trajectory is then implemented on a physical prototype for validation purposes. Experimental data confirm the practical viability of the proposed methodology.
Keywords: Energy Efficiency | Position Accuracy | Trajectory Optimization | Virtual Prototyping
Abstract: The paper proposes an alternative approach to well-known feedback solutions, such as visual displays or warning sound messages, to make users perceptually aware of the energy consumption occurring when using a product. The approach is grounded on the use of multisensory feedback interfaces that are designed to make the user experience the consumption process directly during the interaction with the product. Such multisensory feedback should be intended as indications, rather then alarms, so as to naturally guide users towards a more sustainable behaviour. The daily task of opening the fridge door has been used as case study. All the steps followed to ideate and test the effectiveness of the designed multisensory interfaces are discussed. The results demonstrate how even simple stimuli, such as a gradual colour change of the fridge cavity from a cold to a warm one, may be able to reduce the time users keep the fridge door open.
Keywords: Design for behaviour change | Human behaviour in design | Multisensory design | Sustainability | User centred design
Abstract: According to the growing pressure on Sustainability issues from governances, manufacturing industries must pay their attention to optimize their processes. Anyway, it is necessary go behind this preliminary approach, extending the boundaries from the single company to the other actors that operate in the same supply chain. In this context, the paper proposes a methodology to increase the sustainability and to guarantee the traceability along the whole product supply chain. The methodology allows to model any supply chain, through the data collection from all the actors involved, and to measure the environmental sustainability, through the implementation of a distributed software system. The experimental case study, which involved a leather shoe supply chain, allowed to demonstrate the effectiveness of the approach in the selection of suppliers and in the optimization of the supply chain, taking into account the environmental aspects together with the other constraints such as design, costs and quality.
Keywords: Design for X (DfX) | Supply chain modelling | Sustainability | Traceability
Abstract: To preserve proper growth of the planet, industries have to increase sustainability of produced good according to the compliance and governance regulations for NPD (new product development). Sustainability concerns economical, environmental and social aspects; among these issues, the last theme is the less argued in literature and this paper focuses on the social life cycle assessment of products. One of the crucial aspects of S-LCA, is the definition of impact categories and involved stakeholders. This work, proposes a new S-LCA methodology, according to UNEP/SETAC framework. After the clarification of stakeholders, categories and general notions already known on S-LCA, a test case is shown where the new approach is implemented. In this use case, stakeholders from an Italian product line are analysed, then categories of attribution of social impacts are outlined. The paper offers a step-by-step procedure useful to verify the S-LCA theories currently available on a practical industrial case, defining also weaknesses that might be addressed in future studies.
Keywords: S-LCA | Social life cycle assessment | Sustainability
Abstract: Over the last years the sustainability issue has grown exponentially and it has involved several engineering areas, starting with the product sustainability, then to the factory sustainability, up to reach the entire Value Chain sustainability. Due to the continuous increasing of complex relations among factories, suppliers, and customers, a new method for investigating the entire Value Chain, considering its key partners, their requirements in terms of materials usage and energy consumption, and how these requirements influence the Value Chain sustainability is presented. This model will aim companies to define the criticalities inside the Value Chain relations and to develop possible improved scenarios.
Keywords: Energy and resources efficient use | Sustainable manufacturing | Sustainable value chain
Abstract: This study presents an approach for the evaluation of the energy efficiency and environmental impacts of a new modular and integrated system of renewable electricity generation and intelligent electrochemical storage systems, that allows auto-production and self-consumption of electricity in residential buildings. Homes with installed these renewable energy production systems are compared from an environmental and economic point of view, to the traditional ones, that draw electricity energy directly from the grid. In this context different scenarios are considered together with different configurations of power production and storage capacity, in order to compare different use cases. To this end, the environmental impact along all the life cycle of these systems is examined with the help of the SimaPro software simulation tool and quantitatively assessed.
Keywords: Energy efficiency | Environmental impact | Self-consumpion
Abstract: The number and breadth of eco-improvement methods has been steadily rising over the past decades. However a lot of eco-friendly product are struggling to find their collocation on the market. This deficit is generally due to the high costs of the proposed solutions. TRIZ methodology offers a structured way to simplify a technical system, exploiting all resources within it and overcoming internal contradictions that could prevent his evolution. Unfortunately a complete TRIZ activity could be time-consuming and requires people skilled in the art. In the present paper, we propose a simplified scheme, conceived to facilitate the use of the resources, totally based on TRIZ. Not to substitute, but to get along and systematize eco-design. A case study is proposed to save water from the tap opening until hot water starts to flow, which is usually wasted. Starting from an Italian application (www.bluewatersaving.it) obtained through patent research, the method can make this solution cheaper and more robust. Considering that for a big house (120 m2, 4 people) the water saving is up to 120k litres per year, the benefit consequential to its adoption on the planet would be considerable.
Keywords: Design methods | Ecodesign | Sustainability | TRIZ
Abstract: Eco-improvement tools aim at identifying the most critical areas of a product life cycle, thanks to eco-assessment techniques like LCA. The designer is then encouraged to intervene by modifying the product or the manufacturing process characteristics. However, even a slight change of the product life cycle can seriously affect other parts of the cycle itself. Usually, this influences are hard to predict. Only an expert of LCA could effectively anticipate the major repercussions of a life cycle alteration. However, with the introduction of abridged aLCA, life cycle analysis has become a tool for the common designer, which usually doesn't have the expertise to identify the great number of interdependences involved. In these cases, the designer's efforts in reducing product environmental impacts can be ineffective or even counterproductive. This paper proposes a method and tool, called contradiction prompter, which integrates TRIZ in Life Cycle Assessment. Once environmental criticalities are defined by LCA, a set of guidelines are suggested to intervene on the product. The contradiction prompter collects a set of predefined typical contradictions that can arise when adopting a specific guideline. This can limit the typical trial and error approach and reduce the risk of ineffective redesigns. The framework has been clarified through an exemplary case study, dealing with the redesign of a moped wheel.
Keywords: Contradicitons | Ecodesign | LCA | TRIZ
Abstract: Electric motors are one of the most common electrical components. The design phase is the most important stage in which 'green' customised solutions can be ideated, evaluated and optimised. Different aspects have to be concurrently addressed to achieve a high quality product in a short time to market. The present paper describes an innovative approach and software platform to configure and simulate customised electric motors. A key feature of the platform is a knowledge-based system that aims to standardise the design process. The platform integrates different software tools to support the development and verification of several design aspects, such as energy efficiency, manufacturing costs and environmental impacts. It also provides a collaborative area to support collaboration along the whole supply chain. Different case studies are presented to show the effectiveness of the platform application in supporting designers in the creation of innovative products. © 2014 Inderscience Enterprises Ltd.
Keywords: Collaborative design | Cost estimation | Eco-design | Electric motors | Energy efficiency | Integrated approach | IT platform | Knowledge-based system | LCA | Life cycle assessment | Optimisation
Abstract: Recently, the environmental problem has become a key issue for the modern society, due to the increase of pollution and global warming. Manufacturing industry is recognized as one of the main responsible of this situation, since it uses a large amount of energy and emits a relevant part of the total carbon dioxide. The only possible way to face this problem is the implementation of sustainable manufacturing approaches, in order to measure and reduce the global environmental impact of companies. In this context, the present paper focuses on a method for the pre-emptive evaluation of the environmental and economic sustainability of manufacturing lines/plants, considering the whole life cycle from line manufacturing and initial set-up, to the end of life (i.e. reuse/dismantling). A special attention has been paid in the use phase, since this one represents the most critical stage, as for all the energy using equipment. Its accurate modelling, considering each energy typology (electrical, thermal, etc.) with the relative detailed use scenarios (multiple working points for each equipment), is an essential prerequisite to estimate the global sustainability with an acceptable accuracy. The concurrent LCA and LCC analyses, realized on the basis of the production line life cycle model, considering the different cost items and environmental impacts, permits a company to estimate the overall sustainability of an existing or new line, understanding the most important criticalities, and evaluating possible alternatives through comparative analyses. A case study has been conducted thanks to the collaboration of a manufacturer of plastic extruded pipes. It demonstrated the usefulness of the proposed approach in the identification of the most critical line equipment/functional groups and in the evaluation of different scenarios for the line replacement, both from an environmental and economic point of view.
Keywords: Energy consumption | Environmental and economic sustainability | Sustainable manufacturing
Abstract: Recently manufacturing enterprises are challenged by the transition from product-centered solutions to the new concept of Product-Service System (PSS). However, designing a new PSS implies the definition of new specifications and the integration of the necessary assets to create a coherent system. This paper presents a QFD-based methodology to support manufacturing companies moving from products to services by focusing on product-service design. It starts from the analysis of the target market and customer needs, and correlates them with the functionalities and with the assets offered by the company ecosystem. The method is validated on a real case study where a white goods producer wants to innovate its business by service-based solution. Assets are virtualized and selected with the final scope to design a highly sustainable PSS. The case study considers the design of a predictive maintenance service for dryers, which includes the product enhanced with advanced HW and SW components, a remote service for product monitoring and data elaboration, and a web / mobile application for customer interaction and service provisioning. © 2014 IEEE.
Keywords: Ecosystem assets analysis | Industrial case study | Product-Service design | Product-Service System (PSS) | Sustainability
Abstract: This paper presents a method to evaluate the environmental and economical sustainability of a manufacturing line/plant along its whole life cycle. The concurrent analysis of LCA and LCC allows the process engineers to estimate the production sustainability during the design of a new production line. The method considers costs and environmental impacts of the initial deployment (i.e. initial investment and set-up), use (i.e. workload or maintenance required by each machine) and end of life (i.e. retirement) of the analyzed system. The approach has been tested in a company that manufactures extruded pipes with the aim to evaluate the relative benefits. © 2014 Elsevier B.V.
Keywords: Energy consumption | Environmental and economical sustainability | Sustainable manufacturing
Abstract: Nowadays, companies need to develop sustainable solutions to be competitive and to respect international standards. It means producing products compliant to target costs, impacts and risks, as well as exploiting sustainable processes. This is particularly challenging for those processes requiring a large consumption of energy, which have high environmental and economic impacts. In this paper the industrial process of plastic material extrusion is considered and analysed. Indeed, it is a highly energy-consuming process that requires monitoring the energy consumption and controlling the process parameters to increase the sustainability and assure the respect of standards. The research is based on lifecycle design (LCD) and sustainable manufacturing principles. The proposed method aims at improving the extrusion process sustainability by identifying the more energy-consuming phases and evaluating the impact of manufacturing process items on the achievement of target values. The industrial case study demonstrates how such a method supports sustainability optimisation and compliance to standards.
Keywords: Energy management | Environmental and safety standards | LCD | Lifecycle design | Process lifecycle assessment | Sustainable manufacturing
Abstract: The interest in novel methods and tools for opt imizing the energy consumption in robotic systems is cur- rently increasing. From an industrial point of view,it is desirable to develop energy saving strategies also applicable to established manufacturing systems with no need for either hardware substitu tion or further investme nts. Within this scenario,the present paper reports amethod for reducing the total energy con- sumption of pick-and-place manipulators for given TCP position profiles.Firstly,electromechanical mod- els of both serial and parallel manipulators are derive d.Then,the energy-optimal trajectories are calculated, by means of constant time scaling,starting from pre-scheduled trajectories comp atible with the actuation limits. In this manner,the robot work cycle can be energetically optimized also when the TCP position profiles have been already definedon the basis of technological constraints and/or design choices aimed at guarante eing manufacturing process efficacy/robustness.The effectiveness of the pro- posed procedure is finallyevaluated on two simulation case studies. Copyright © 2013 Published by Elsevier Ltd. All rights reserved.
Keywords: Electromechanical modeling | Energy efficiency | Robotic manufacturing | Virtual prototyping
Abstract: The product eco-sustainability is recognized as a key factor for competitive products and recently lots of international directives (guidelines) have been issued. This paper aims to define a new methodology integrated in the product development process that, through the application of the most common eco-design guidelines and design past experiences, supports designers in the development of eco-sustainable products. Eco-design guidelines retrieved from the literature are subdivided according to a well-organized structure in "high level of abstraction" and "high level of detail" ones. In addition, Eco-knowledge is defined as all the choices and their related environmental performances, designers made during the design process of a product. The implementation of the proposed methodology in the product development process of an Italian cooker hood producer, allows to analyze the benefits achievable in terms of product eco-sustainability improvement. This analysis highlights that the proposed approach supports the implementation of eco-design principles, also in those companies without a specific background in eco-design.
Keywords: CBR | Decision making | Eco design | Eco-design guidelines | Sustainability
Abstract: Purpose During past years several eco-design methodologies have been previously defined but none can be easily integrated in the traditional design process of manufacturing companies. This paper wants to overcome this lack and aims to define a methodology, called G.EN.ESI, to help also those designers without a specific know-how on eco-design, during the development of sustainable products. Design/methodology/approach The proposed methodology is composed by six main steps defined to link the eco-design activities with the traditional design activities, to the aim of defining a TO-BE design process. Also new tools have been defined in order to help designers in the assessment of the environmental and cost impacts of a product. These tools have been integrated in an univocal software package, called G.EN.ESI platform. The platform is composed by four tools for the definition of the life cycle model of the product (one for each product life cycle phase), two tools for the assessment of the environmental and cost impacts and a tool to guide the decision-making process. Furthermore, a web module to retrieve the necessary data from the supply chain subjects has been defined. Finally, the link with the CAD and PLM systems is proposed to increase the usability of the platform. Originality/value Using such a platform, the designer is supported by a robust workbench to perform all the analyses required to evaluate the product eco-sustainability for each phase of the product lifecycle. Hence, this software package is essential for companies to implement all the methodology steps without the need to heavily alter the consolidated modus operandi and the internal organization.
Keywords: Eco-design methodology | G.EN.ESI platform | Sustainable design
Abstract: Recently numerous companies are moving from products to services to create new business opportunities and increase the value perceived by the customers thanks to an extended value creation network. The research challenge is to support traditional manufacturing enterprises evaluating the shift from products to services as far as sustainability is concerned. While product sustainability can be assessed by several tools, the impacts of PSS (Product-Service Systems) are almost unexplored. This paper adopts a holistic approach to assess sustainability by estimating three main impacts: environmental, economical and social. The methodology is illustrated by means of an industrial case study focusing on washing machines; it analyses the traditional scenario based on tangible product selling with a vertical supply-chain, and an innovative PSS scenario proposing washing as a service within an extended network. Data comparison highlights the achievable benefits of PSS on sustainability.
Keywords: Extended Enterprise | Lifecycle Design | PSS (Product- Service System) | Sustainability
Abstract: New directions in modern industry are creating distributed virtual enterprises and pushing companies towards service-enhanced products. Both trends converge when a Virtual Manufacturing Enterprise (VME) is created to provide product-service solutions. At the same time, sustainability is a crucial aspect for industrial networks. This paper proposes a methodology to assess the sustainability of Product-Service Systems (PSS) in a VME by modelling an integrated lifecycle, defining impact categories and KPIs, and evaluating all the partners' contributions. The method allows easily comparing PSS design alternatives to each other or with traditional products. The industrial case study is represented by a "washing as a service" solution proposed by a worldwide VME. Sustainability assessment is useful to highlight the service benefits as well as the critical phases, and to support VME decision-making. © IFIP International Federation for Information Processing 2013.
Keywords: Product-Service Systems (PSS) | Service-enhanced products | Sustainability | Sustainable manufacturing networks | Virtual Manufacturing Enterprise (VME)
Abstract: Purpose It is well known that industrial processes require large consumption of energy and other resources during the product manufacturing phase. This exploitation of energy is reflected both in terms of environmental impact and in terms of economic impact, which can be measured through specific tools. The measurement of these environmental and economic impacts is an essential step towards both the control of the energy consumption and energy costs and in sustainability energy assessment. In this paper is presented the extrusion process of plastic materials in a big Italian company. This process is highly energy-consuming and for this reason it is necessary monitoring the energy consumption and controlling the process parameters to increase the energy sustainability and, at the same time, decrease the environmental and social impacts. The aim of this work is presenting a methodology to capture the extrusion process sustainability to have a base line useful to compare the results of any other extrusion process assessment. Design/methodology/approach The proposed methodology aims to identify the high energy consuming machineries, components, and devices in the company. To do this, the industrial process must be organised in several functional components which have a specific number of input and output. The first step in this propose is the process evaluation in terms of the definition of the functional modules involved and the identification of the input/output needed in each one. After the collection of these data, the next step is the assessment of the environmental and economic impacts through Life Cycle Assessment analysis (LCA) and Life Cycle Cost Assessment analysis (LCCA). This study is supported by a hardware and software infrastructure among the extrusion process machineries and the SimaPro tool to conduct the LCA and LCCA analyses. Originality/value The innovation of this paper is to consider the Life Cycle Assessment of a process through the evaluation of each its components. The resulted impacts are focused on the process sustainability and not on the product sustainability as is instead largely made clear in the literature. The results of this work are related to the definition of a methodology in the field of industrial processes evaluation; in fact, it has been defined a new approach to conduct the Life Cycle Assessment focused on the industrial process and it has been suggested a method to evaluate the Energy Sustainability in a highly energy-consuming process.
Keywords: Energy efficiency | Process life cycle assessment | Process monitoring | Sustainable manufacturing
Abstract: This paper quantitatively reports about potential energy savings on robotic assembly lines for the automotive industry. The key aspect of the proposed approach is that both cell production rate and robot hardware limitations are considered as strict constraints, so that no plant revision is needed. The methodology relies on: a) calculation of energy-optimal trajectories, by means of time scaling, concerning the robots' motion from the last process point to the home positions; b) reduction of the energy consumption via earlier release of the actuator brake when the robots are kept stationary. Simulation results are presented, which are based on the production timing characteristics measured on a real plant. © 2012 IEEE.
Keywords: Energy Efficiency | Industrial Robots | Production Planning | Trajectory Scaling
Abstract: Smart products are becoming more present in everyday life. They are prevalent in different markets such as electronic devices, cars and household appliances. One important dimension of product smartness is "multi- functionality". When choosing a product, the consumer takes into account subjective and objective purchase drivers. Price, brand, aesthetics, environmental impact and functionalities represent an important set of these. In this context the work are interested in correlating two drivers: functions and eco-sustainability. Generally, this last characteristic should be maximized taking into consideration a correct balance with product functionalities. The aim of this work is to investigate this correlation. It can be measured by a suitable correspondence in order to determine a quantitative law. This relationship can be useful to the designers to determine the product features during the product design phase, but it can be also used by consumers to compare similar products. This paper reports the problem domain, approach for correlation law definition and, finally, the experimental analysis of product functions vs. environmental sustainability. Two case studies in the household appliances sector will exemplify the proposed analysis. Copyright © 2012 by ASME.
Keywords: Environmental impact | Functions | Product design | Product evaluation
Abstract: Electric motors are one of the most common electrical components used both in industrial and household applications. In order to reduce world energy consumption and environmental impact, electric motors need to be improved in terms of efficiency and eco-sustainability. For this reason it is necessary to improve environmental consciousness, favouring the application of eco-design guidelines in the design phase, which is the most important stage where "green" solutions can be rapidly ideated, evaluated and optimized. Different aspects have to be concurrently considered in order to achieve a high quality product in a short time to market. In this context, the present paper describes an innovative web-based software platform to configure and simulate customized energy efficient electric motors. The core of the platform is a knowledge-based system which aims to standardize the design process according to the rules which represent the company know-how and best practices. The platform integrates different software tools to support the development from conceptual design to detailed design, and from the configuration of design solutions up to environmental impact assessment and manufacturing cost evaluation. It also provides a collaborative area in order to improve the collaboration among remote users involved in the design process, thanks to the sharing of important design data and models. The presented practical case studies demonstrate the effectiveness of the platform application. The achieved results demonstrate the improvement of the configured solutions in comparison with the traditional adopted motors. The new motors exhibit both a considerable increase in energy efficiency and at the same time relevant improvement in product sustainability combined with acceptable production costs. © 2012 Elsevier Ltd. All rights reserved.
Keywords: Collaborative design | Eco-design | Electric motors | Energy efficiency | Knowledge-based system
Abstract: The interest in novel engineering methods and tools for optimizing the energy consumption in robotic systems is currently increasing. In particular, from an industry point of view, it is desirable to develop energy saving strategies applicable also to established manufacturing systems, being liable of small possibilities for adjustments. Within this scenario, an engineering method is reported for reducing the total energy consumption of pick-and-place manipulators for given end-effector trajectory. Firstly, an electromechanical model of parallel/serial manipulators is derived. Then, an energy-optimal trajectory is calculated, by means of time scaling, starting from a pre-scheduled trajectory performed at maximum speed (i.e. compatible with actuators limitations). A simulation case study finally shows the effectiveness of the proposed procedure. © 2011 IEEE.
Keywords: energy efficiency | Pick-and-place manipulators
Abstract: In recent years International and Communitarian directives have focused their attention on the problem of energy consumption. In this context electric motors play a key role and designers must improve products considering this direction. This paper presents an innovative platform, called EROD (Energy Reduction Oriented Design), which consists of multiple software modules with different functionalities to support the whole design process of electric motors. The goal of EROD platform is to achieve energy efficient and sustainable electric motors and related devices. The platform facilitates knowledge and data sharing among design team members, it arranges the workflow activities and finally it promotes collaborative design sessions. All functionalities are implemented within the same web-based platform. This guarantees interoperability among different tools and leads up to significant reduction of development time due to the elimination of errors and iterations. The platform was tested to design five innovative electric motors for industrial and household applications. Results show that the new developed motors improve current solutions in terms of energy efficiency and environmental impact during use. © 2011 IEEE.
Keywords: collaborative design | efficiency | electric motors | environmental impact | optimization
Abstract: The application of life cycle assessment (LCA) is usually aimed at products where most parameters relating to architecture, processes and materials are defined and known. However, application of conventional LCA for products or services that are incomplete in their specification is quite difficult or even impossible, if too many significant parameters are unknown. In our previous work targeting the development of eco-design tools, an approach integrating LCA methodology with the concept of product modularity has been introduced. In this paper, further improvements of this novel approach, being based on fuzzy logic and its application, are presented. In this context, fuzzy logic is being used to increase user friendliness of the interface while avoiding any circumstances of compromising the precision of quantitative results computed. A set of fuzzy attributes, membership functions and an inference algorithm are used to evaluate the modification of design parameters of modular products regarding their influence on environmental impact indicators. Copyright © 2009 Inderscience Enterprises Ltd.
Keywords: AFF | Alternative function fulfilment | Fuzzy logic | LCA | Life cycle assessment | Modular product architecture | Sustainable manufacturing
Abstract: Early human civilizations developed along water corridors. With increasing dependency of human activities on energy, sustainability of future civilizations would be largely linked to sustainability of energy resources and systems. The tie between energy and socio-environmental sustainability, though obvious remains nebulous mostly because, neither energy nor sustainability are clearly defined. While thermodynamic definition of energy is relatively clear, its nature (as linked to human activities and sustainable development) is not well understood. This paper is an attempt to present a metric for the components and attributes of energy resources and technologies as interfaced with human civilization. A fuzzy logic model is used to scale energy systems based on their valued attributes (such as storability, transformability, quality, transportability, availability, environmental value and resource sustainability). The model is used to predict future energy corridors and their association with economical growth and sustainability. It is shown that green energy systems should be developed not in isolation but integrated in intelligent "synergetic" systems to meet the energy demands of future human civilizations. © 2009 Springer Berlin Heidelberg.
Keywords: Fuzzy Metric | Renewable Energy | Sustainability
Abstract: As experience in EcoDesign increases, academic and industry thinking is moving towards the more advanced stages of EcoDesign; moving away from product improvement and product redesign into the more holistic approaches of Alternative Function Fulfilment (AFF) and system innovation. This paper investigates how modularity concept, applied to product design, allow much degrees of freedom for the designer, more possibility to reduce environmental impact related to product life-cycle and increase the interaction between LCA and the earlier stages of the (Eco)design process. A method, based on the product modularity concept, to increase LCA usability for the designers is proposed in this paper.
Keywords: Alternative Function Fulfilment | Ecodesign | LCA | Modularity
Abstract: There is an urgent need for sustainability in markets and in our economic system. This need is in the face of a growing destruction of non-renewable resources and the ceaseless degradation of the environment. It is generated by affluent societies, relentlessly replacing tangible goods, and is based on wealth economics trading in new products to continue expanding well-being. Industrialised countries are facing the challenge of maintaining living standards, while lowering consumption. This paper describes the novel opportunity offered by trading off products-services, namely, enhanced products or extended deliveries, which include the life-cycle and recycling incumbents and supplies, with a transparent accounting of resource depletion. Product enhancement relates directly to information content, it is consistent with the wealth driven economics of the knowledge society, and it naturally leads to the description of manufacturing processes by KILT-models. There, in addition to investment I and labour L, both knowledge K and tangibles T are considered as independent productivity factors. In that context, the use of TYPUS-metrics is required to assess resource decay. This opportunity is related to extended enterprises and co-operative infrastructures. These provide a critical means to manage product life-cycles for sustainability with a measure of the resulting environmental impact. The developments are presented as innovative steps, necessary to enable eco-consistent changes with technological issues framed in coherent social and legal arrangements. © 2004 Elsevier B.V. All rights reserved.
Keywords: Extended enterprises | KILT-models | Method innovation | Sustainability | TYPUS-metrics
Special Issue "Recent Advances in Smart Design and Manufacturing Technology"
Special Issue "Applications of 3D High-Resolution Optical Digitizers in Industrial Products"
Special Issue "3D Sensing and Imaging for Biomedical Investigations"
Special Issue "Automated Product Inspection for Smart Manufacturing"
Special Issue "Modeling, Testing and Applications of Metallic Foams and Cellular Materials"